
�

ALICE Internal Note/DAQ
ALICE-INT-2010-001

ALICE DAQ

and ECS

Manual

December 2010
ALICE DAQ Project
ALICE ECS Project

�

Preface iii
Preface

ALICE [1] is a general-purpose detector designed to study the physics of strongly
interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the
CERN Large Hadron Collider (LHC). ALICE will operate in several different
running modes with significantly different characteristics. The experiment has been
primarly designed to run with heavy ions beams, which are characterized by
relatively low rates (interaction rates <= 10 kHz for Pb-Pb beams at design
luminosity of L=1027 cm-2s-1), relatively short running time (order of few weeks per
year) but very high multiplicity and correspondingly large event size. The
requirements on the low level trigger selectivity are therefore relatively modest,
whereas the trigger complexity is considerable and requires partial or full
reconstruction in the high-level trigger. In addition, a large bandwidth DAQ
together with efficient data selection and/or data compression in the High-Level
Trigger (HLT) are required to collect sufficient statistics in the short running time
available.

In proton-proton or proton-ion running mode, the interactions rates are much
higher than in heavy-ion runs (up to 200 kHz, limited by pile-up in the TPC
detector), whereas the event size is small and the running time is typically of
several months per year in pp mode. Therefore, the requirements on trigger
selectivity is increased while requirements on trigger complexity and bandwidth
are much reduced.

The ALICE data-acquisition system has been designed to run efficiently in these
different modes and to balance its capacity to record the very large events (several
tens of MBytes) resulting from central PbPb collisions with an ability to trigger and
acquire rare cross section processes.

These requirements result in a readout capability of up to 40 GByte/s, an aggregate
event-building bandwidth above 2.5 GByte/s and a storage capability up to 1.25
GByte/s to mass storage.

The software framework of the ALICE DAQ is called DATE (ALICE Data
Acquisition and Test Environment) and consists of a set of software packages
described in the Part 1 of this guide.
ALICE DAQ and ECS manual

iv Preface
�

The global control of the experiment is ensured by the Experiment Control System
(ECS) and the ALICE Configuration Tool (ACT) which are described in Part 2.

The standalone software developped for the Detector Data Link (DDL) via the
DAQ Read-Out Receiver Card (D-RORC) is documented in Part 3.

The Part 4 describes the Detector Algorithm framework (DA).

The data quality monitoring is performed with the AMORE software package
documented in Part 5.

The monitoring of the DAQ system itself is performed by the Lemon package
described in the Part 6.

The Part 7 is dedicated to a description of the electronic logbook.

This User’s Guide can be found in the ALICE EDMS:

https://edms.cern.ch/document/1056364/

and on the ALICE DAQ web site [19].

The Authors

F. Carena, W. Carena, S. Chapeland, V. Chibante Barroso, F. Costa, E. Dénes,
R. Divià, U. Fuchs, G. Simonetti, C. Soós, A. Telesca, P. Vande Vyvre,
B. Von Haller.
ALICE DAQ and ECS manual

https://edms.cern.ch/document/1056364/1

Preface v
Important note on software versions

This user’s guide describes the behavior of the software versions listed in
Table 0.1. When using different versions of the packages, it is recommended to
read the associated release notes.

 0.1 Software versions corresponding to this guideTable

Package Version

DATE 7.00

ECS 4.00

RORC library 5.3.8

AMORE 1.24

LEMON 2.15.0
ALICE DAQ and ECS manual

vi Preface
�

ALICE DAQ and ECS manual

Contents vii
Contents

Preface. . iii

Part I
DATE Reference Manual

Chapter 1
DATE overview . 1

1.1 ALICE data-acquisition architecture 2
1.2 DATE overview . 3

1.2.1 Parametrization of the hardware configuration 4
1.2.2 Interactive setting up of the data-acquisition parameters . . 4
1.2.3 Run control 4
1.2.4 Load balancing 4
1.2.5 Event monitoring 5
1.2.6 Information reporting 5
1.2.7 Electronic Logbook 5
1.2.8 Performance monitoring system 5
1.2.9 Detector algorithms 5

1.2.10 Data Quality Monitoring 5
1.3 DATE architectural strategies 6

1.3.1 Protocol-less push-down strategy 6
1.3.2 Detector readout via a standard handler 6
1.3.3 Light-weight multi-process synchronization strategy. . . . 6
1.3.4 Common data-acquisition services 6
1.3.5 Detectors integration 6
1.3.6 DATE installation 7

Chapter 2
DATE configuration parameters 9

2.1 DATE site parameters 10
2.2 Base configuration . 10
2.3 Use of hostnames vs. IP addresses. 11
ALICE DAQ and ECS manual

viii Contents
�

Chapter 3
Data format . 13

3.1 Conventions . 14
3.2 Base header and header extension 14
3.3 Streamlined and paged events 14

3.3.1 Streamlined events. 15
3.3.2 Paged events 16

3.4 Collider and fixed target modes 18
3.5 The base event header 19

3.5.1 eventSize . 20
3.5.2 eventMagic 21
3.5.3 eventHeadSize 21
3.5.4 eventVersion 21
3.5.5 eventType 21
3.5.6 eventId . . 22
3.5.7 eventTriggerPattern 24
3.5.8 eventDetectorPattern 25
3.5.9 eventTypeAttribute 27

3.5.10 eventLdcId and eventGdcId 30
3.5.11 eventTimestampSec and eventTimestampUsec 30

3.6 The super event format 31
3.7 The complete file format 33
3.8 Decoding and monitoring on different platforms 34
3.9 The Common Data Header 36

3.9.1 Common Data Header version 37
3.9.2 Status and Error bits 37

3.10 The equipment header 37
3.10.1 equipmentSize 38
3.10.2 equipmentType/equipmentId 38
3.10.3 equipmentTypeAttribute 38
3.10.4 equipmentBasicElementSize 38

3.11 Paged events and DATE vectors 38
3.12 Data pools . 41

Chapter 4
Configuration databases . 43

4.1 Overview . 44
4.2 Information schema 44
4.3 The static databases 45

4.3.1 Terminology and assumptions 46
4.3.2 The roles database 47
4.3.3 The trigger database 48
4.3.4 The detectors database 48
4.3.5 The event-building control database 49
4.3.6 The banks database 50

4.4 Other centrally stored parameters 52
4.4.1 DATE globals. 53
4.4.2 DATE sockets 53
4.4.3 DATE detector codes 53
4.4.4 DATE Environment 54
4.4.5 DATE Files 55
4.4.6 DATE Detector Files 55
4.4.7 DATE readout equipment tables. 55

4.5 The database editor 56
4.6 Example of a DAQ system 63
4.7 The programming interface 68
ALICE DAQ and ECS manual

Contents ix
Chapter 5
The monitoring package . 85

5.1 Monitoring in DATE 86
5.2 Online monitoring and role name 88
5.3 Monitoring and Analysis in C/C++ 89

5.3.1 Some simple examples 90
5.3.2 The monitoring package files 91
5.3.3 Error codes 92
5.3.4 The monitoring callable library 92

5.4 Monitoring by detector 100
5.5 Monitoring from ROOT 101

5.5.1 The ROOT system 101
5.5.2 Direct monitoring in ROOT 101

5.6 The “eventDump” utility program 102
5.7 Monitoring of the online monitoring scheme 103

5.7.1 The monitorClients utility. 103
5.7.2 The monitorSpy utility 104

5.8 Monitoring configuration 104
5.8.1 Creation of configuration files 105

Chapter 6
The readout program . 109

6.1 The readout process 110
6.1.1 Start of run phases 111
6.1.2 Main event loop 112
6.1.3 End of run phases. 114
6.1.4 Log messages 114

6.2 The generic readList concept 115
6.3 Using the generic readList 117
6.4 The equipmentList library 118

6.4.1 Synopsis of the equipment routines 118
6.4.2 Accessing the parameters 123
6.4.3 The function references. 124

Chapter 7
The RORC readout software 125

7.1 Introduction to the RORC equipment 126
7.2 Internals of the RORC equipment 127

7.2.1 Event Identification 127
7.2.2 Data transfer mechanism of the RORC device 128
7.2.3 Elements to handle the RORC device 129
7.2.4 Equipments to handle the RORC device 132

7.2.4.1 Equipment RorcData. 133
7.2.4.2 Equipment RorcTrigger. 134
7.2.4.3 Equipment RorcSplitter. 134
7.2.4.4 Configuring the RorcData equipment 134
7.2.4.5 Configuring the RorcTrigger equipment 138
7.2.4.6 Configuring the RorcSplitter equipment 138

7.2.5 Data flow for multiple RORC devices 139
7.2.6 Pseudo code of the RORC equipment routines 140

7.3 Introduction to the UDP equipment 145
7.4 Internals of the UDP equipment 145

7.4.1 Data transfer mechanism of the UDP equipment 146
7.4.2 The back-pressure algorithm. 146
7.4.3 Equipments to handle the Ethernet port 147

7.4.3.1 Equipment RorcDataUDP 148
ALICE DAQ and ECS manual

x Contents
�

7.4.3.2 Equipment RorcTriggerUDP 148
7.4.4 Data flow for multiple UDP equipments. 148

Chapter 8
The trigger system . 149

8.1 The trigger system 150
8.1.1 The Central Trigger Processor (CTP) 150

8.2 LDC synchronization via the equipments 151

Chapter 9
COLE - COnfigurable LDC Emulator 153

9.1 Introduction . 154
9.2 Delayed mode vs. free-running mode 155
9.3 System requirements and configuration 155
9.4 COLE as an Equipment 157
9.5 Basic Design . 157

9.5.1 ArmHw() 157
9.5.2 EventArrived() 157
9.5.3 ReadEvent() 158
9.5.4 DisArmHw() 158

9.6 The colecheck utility 158

Chapter 10
Data recording . 159

10.1 Introduction . 160
10.2 Common data recording procedures 160
10.3 Recording from the LDC 162
10.4 Recording from the eventBuilder 163

10.4.1 Direct recording. 164
10.4.2 Online recording 164

10.5 Recording with the Multiple Stream Recorder 167
10.5.1 Overview 167
10.5.2 MSR configuration file 169

10.5.2.1 Configuration file: naming and handling . . . 169
10.5.2.2 Configuration examples 169
10.5.2.3 File names 171
10.5.2.4 The configuration file syntax: tags and attributes 172
10.5.2.5 The configuration file structure 173
10.5.2.6 Scopes of attributes and rules of precedence . . 173
10.5.2.7 Summary 176

10.5.3 Description of the MSR configuration attributes 176
10.5.4 How to build and run MSR 179

Chapter 11
The infoLogger system . 183

11.1 Introduction . 184
11.2 infoLogger configuration 184
11.3 The infoLogger processes. 185

11.3.1 infoLoggerReader 186
11.3.2 infoLoggerServer 186
11.3.3 infoBrowser 186

11.4 Log messages repository 187
11.4.1 MySQL database 187
11.4.2 Archiving 188
11.4.3 Retrieving messages from repository 188

11.5 Injection of messages 188
ALICE DAQ and ECS manual

Contents xi
11.5.1 Logging from the command line 189
11.5.2 Logging with the C API 189
11.5.3 Logging with the Tcl API 194

Chapter 12
The eventBuilder . . 195

12.1 Overview . 196
12.2 The event-builder architecture 196

12.2.1 The data transfer from the LDC to the GDC 196
12.2.2 The communication protocol between the LDC and the GDC 197
12.2.3 The communication protocol between the eventBuilder and the

edm 197
12.2.4 The event-building process 197
12.2.5 SOR/EOR records, files and scripts 198

12.3 Data buffers . 198
12.4 Consistency checks on the data 199
12.5 ALICE events emulation mode 199
12.6 The control of the eventBuilder 200
12.7 Information and error reporting 200

12.7.1 Usage of the infoLogger 200
12.7.2 Run statistics update. 200
12.7.3 End-of-run messages 200

12.8 Configuration. . 200

Chapter 13
The event distribution manager 203

13.1 Overview . 204
13.2 The EDM architecture. 205

13.2.1 The edm process 207
13.2.2 The edmClient process 208
13.2.3 The edmAgent process 208

13.3 The synchronization with the run control 210
13.4 Information and error reporting 210

Chapter 14
The runControl . 211

14.1 Introduction . 212
14.2 Architecture . 212
14.3 The runControl process 213
14.4 The runControl interface. 216
14.5 The runControl Human Interface 216
14.6 The Logic Engine . 216
14.7 The rcServers . . 217
14.8 The RCS interface . 218
14.9 Run parameters . . 218

14.10 Run-time variables 224
14.11 Control of the log messages 228
14.12 Log Files . 228

Chapter 15
The physmem package . 231

15.1 Introduction . 232
15.2 Installation of the physmem driver 232

15.2.1 Configuring the boot loader 232
15.2.2 Setting up the physmem driver 233
15.2.3 Testing the physmem driver 236
ALICE DAQ and ECS manual

xii Contents
�

15.3 Utility programs for physmem. 237
15.4 Internals of the physmem driver 240
15.5 Physmem application library 244

Chapter 16
Utility packages . 249

16.1 The banks manager package 250
16.1.1 Introduction 250
16.1.2 Architecture 250
16.1.3 Entries and symbols 250
16.1.4 Internals 253

16.2 The bufferManager package. 254
16.2.1 Introduction 254
16.2.2 Architecture 254
16.2.3 Common entries 255
16.2.4 Producer entries. 256
16.2.5 Consumer entries 258
16.2.6 Internals 259

16.3 The simpleFifo package 259
16.3.1 Introduction 259
16.3.2 Architecture 260
16.3.3 Common entries 260
16.3.4 Producer entries. 262
16.3.5 Consumer entries 262
16.3.6 Internals 263

16.4 The recording library package 264
16.4.1 Introduction 264
16.4.2 The low-level recording library 264

16.4.2.1 The callable interface 264
16.4.3 The high-level recording library 270

16.4.3.1 The callable interface 270
16.4.4 Internals 273

Chapter 17
Interfaces . 275

17.1 Interface with the Trigger System 276
17.2 Interface to the High-Level Trigger 277

17.2.1 DAQ-HLT interface 278
17.2.2 HLT-DAQ interface 280
17.2.3 Installation and operation 281
17.2.4 Synchronization between hltAgents 282

17.3 Interface to AliEn and the Grid 283
17.3.1 Transfer to PDS 283

17.4 File Exchange Server 286
17.5 Interface to the Shuttle 288

Part II
ALICE Experiment Control System Reference Manual

Preface . 293

Chapter 18
ECS Overview . 295

18.1 Introduction . 296
18.2 Partitions. 296
ALICE DAQ and ECS manual

Contents xiii
18.3 Stand-alone detectors 297
18.4 ECS architecture . . 298
18.5 Detector Control Agent (DCA) 298
18.6 The DCA Human Interface 299
18.7 Partition Control Agent (PCA) 299
18.8 The PCA Human Interface 300
18.9 ECS/DCS Interface. 300

18.10 ECS/DAQ Interface 301
18.11 ECS/TRG Interface. 301
18.12 ECS/HLT Interface. 302
18.13 logFiles . . 303
18.14 Database . 303
18.15 Interactions with other systems 303
18.16 Auxiliary processes 304

Chapter 19
ALICE Configuration Tool . 305

19.1 Architecture . 306
19.1.1 Overview 306
19.1.2 Taxonomy 307

19.1.2.1 Items Locking 307
19.1.2.2 Items Status Mismatch 307
19.1.2.3 Items Activation Status 307

19.1.3 ACT Update Request Server 308
19.1.4 Interfaces 308

19.1.4.1 ACT-ECS interface 308
19.1.4.2 ACT-DAQ interface 308
19.1.4.3 ACT-HLT interface 309
19.1.4.4 ACT-CTP interface 309
19.1.4.5 ACT-Detector interface 309

19.1.5 Workflow 309
19.2 Database . 311

19.2.1 Overview 311
19.2.2 Table description 311

19.2.2.1 ACTsystems table 311
19.2.2.2 ACTitems table 312
19.2.2.3 ACTinstances table 312
19.2.2.4 ACTlockedItems table 313
19.2.2.5 ACTconfigurations table 313
19.2.2.6 ACTconfigurationsContent table 314
19.2.2.7 ACTinfo table 314

19.3 Application Programming Interface 314
19.3.1 Overview 314
19.3.2 Environment variables 314
19.3.3 Data types 315
19.3.4 Database connection functions 317
19.3.5 API cleanup functions 318
19.3.6 ACT READ access functions 320
19.3.7 ACT WRITE functions 323

19.4 Tools . . 325
19.5 Graphical User Interface 327

19.5.1 Overview 327
19.5.2 Authentication and Authorization 327
19.5.3 Expert Mode 327

19.5.3.1 Actions 327
19.5.3.2 Status 328
ALICE DAQ and ECS manual

xiv Contents
�

19.5.4 Run Coordination Mode 328
19.5.4.1 Partitions 328
19.5.4.2 Detectors 329
19.5.4.3 CTP 329

Part III
DDL and D-RORC software Reference Manual

Chapter 20
DDL and D-RORC stand-alone software 333

20.1 Introduction . 334
20.2 Test programs for the RORC, DIU and SIU 335
20.3 Front-end Control and Configuration (FeC2) program 344

20.3.1 General description of the FeC2 program 344
20.3.2 Syntax of script files for the FeC2 program 345

20.3.2.1 FeC2 instructions related to the DDL 345
20.3.2.2 FeC2 instructions related to the program flow. . 349
20.3.2.3 Example of an FeC2 script 351

20.4 DDL Data Generator (DDG) program 352
20.4.1 General description of the DDG program 352
20.4.2 Behavior of the DDG program 352
20.4.3 Syntax of the DDG configuration file 353

20.4.3.1 Channel independent keywords 353
20.4.3.2 Channel dependent keywords 356
20.4.3.3 Common data header keywords. 358
20.4.3.4 Example of a DDG configuration file 360

20.4.4 Syntax of the DDG data files 361
20.5 Stand-alone installation 361

Chapter 21
RORC Application Library 363

21.1 Introduction . 364
21.2 Header files . 364
21.3 The rorc_driver . 364
21.4 Description of the routines and functions 365
21.5 Installation . 389

Part IV
Detector Algorithms Framework

Chapter 22
Detector Algorithms Framework 393

22.1 Introduction . 394
22.2 The Detector Algorithms (DAs) 395
22.3 DA framework architecture 395
22.4 DA framework implementation 397

22.4.1 DA interface API 397
22.4.2 DA control mechanisms 399

22.4.2.1 Runtime parameters 399
22.4.2.2 LDC DA launching 400
22.4.2.3 MON DA launching 400
ALICE DAQ and ECS manual

Contents xv
Part V
Data Quality Monitoring

Chapter 23
Automatic MOnitoRing Environment (AMORE) 405

23.1 Architecture . 406
23.1.1 Overview 406
23.1.2 MonitorObjects. 407
23.1.3 AMORE taxonomy 407
23.1.4 Publishers 407
23.1.5 Clients . . 408

23.2 Database . 408
23.2.1 Overview 408
23.2.2 Archives . 408
23.2.3 Tables descriptions 409

23.3 Application flow . 413
23.3.1 Agents and clients Finite State Machines 414
23.3.2 Initialization 414
23.3.3 Agents and clients inheritance and methods calls sequences . 415

23.4 Features details . . 417
23.4.1 Quality. . 417
23.4.2 Expert/Shifter MonitorObjects 417
23.4.3 Archiver and FIFO 417

23.4.3.1 Purpose 417
23.4.3.2 Implementation of the archiver 418
23.4.3.3 Implementation of the FIFO 420
23.4.3.4 Access to the archives 420

23.4.4 Access Rights 420
23.4.5 ECS-AMORE interaction 420

23.4.5.1 Motivation 420
23.4.5.2 Implementation 421

23.4.6 Logbook usage 421
23.4.6.1 Motivation 421
23.4.6.2 Usages 421

23.4.7 Multi thread image production 422
23.5 Application Programming Interface (API) 422

23.5.1 Core . . 422
23.5.1.1 MonitorObject 422
23.5.1.2 Run 424
23.5.1.3 ConfigFile. 424

23.5.2 Publisher 426
23.5.2.1 PublisherModule 426
23.5.2.2 PublicationManager 427

23.5.3 Subscriber 429
23.5.3.1 SubscriptionManager 429

23.5.4 User Interface (UI) 434
23.5.4.1 VisualModule 434

23.5.5 Detector Algorithms (DA) library 436
23.5.6 Archiver . 436

23.5.6.1 ArchiverModule 436
23.6 Tools . . 437
ALICE DAQ and ECS manual

xvi Contents
�

Part VI
The ALICE electronic logbook

Chapter 24
The ALICE Electronic Logbook 441

24.1 Architecture. 442
24.1.1 Overview 442

24.2 Database . 443
24.2.1 Overview 443
24.2.2 Table description 443

24.2.2.1 logbook table 444
24.2.2.2 logbook_detectors table 446
24.2.2.3 logbook_stats_LDC table 447
24.2.2.4 logbook_stats_LDC_trgCluster table . . 447
24.2.2.5 logbook_stats_GDC table 448
24.2.2.6 logbook_stats_files table 448
24.2.2.7 logbook_daq_active_components table . . 449
24.2.2.8 logbook_shuttle table 449
24.2.2.9 logbook_DA table 451

24.2.2.10 logbook_AMORE_agents table 451
24.2.2.11 logbook_trigger_clusters table 452
24.2.2.12 logbook_trigger_classes table 452
24.2.2.13 logbook_trigger_inputs table 453
24.2.2.14 logbook_trigger_config table 454
24.2.2.15 logbook_stats_HLT table 454
24.2.2.16 logbook_stats_HLT_LDC table 454
24.2.2.17 logbook_comments table. 455
24.2.2.18 logbook_comments_interventions table . 456
24.2.2.19 logbook_files table 456
24.2.2.20 logbook_threads table 456
24.2.2.21 logbook_subsystems table 457
24.2.2.22 logbook_comments_subsystems table . . . 457
24.2.2.23 logbook_users table 457
24.2.2.24 logbook_users_privileges table 458
24.2.2.25 logbook_users_profiles table 458
24.2.2.26 logbook_filters table 458
24.2.2.27 DETECTOR_CODES table. 459
24.2.2.28 TRIGGER_CLASSES table 459
24.2.2.29 logbook_config table. 459

24.2.3 Stored Procedures 460
24.2.4 Events . 460

24.3 Application Programming Interface 461
24.3.1 Overview 461
24.3.2 Environment variables 461
24.3.3 Database connection functions 461
24.3.4 Logging functions 462
24.3.5 eLogbook READ access functions 462
24.3.6 eLogbook WRITE functions 469

24.4 Logbook Daemon 483
24.5 Tools . 484
24.6 Graphical User Interface 487

24.6.1 Overview 487
24.6.2 Authentication and Authorization 487
24.6.3 Features. 487

24.6.3.1 Run Statistics 487
24.6.3.2 Run Details 488
ALICE DAQ and ECS manual

Contents xvii
24.6.3.3 Log Entries 488
24.6.3.4 Announcements 488
24.6.3.5 Automatic Email Notification 488
24.6.3.6 Search Filters 488
24.6.3.7 Export Run Statistics 489

Chapter 25
LHC machine monitoring . 491

25.1 DATA INTERCHANGE PROTOCOL (DIP) 492
25.1.1 The DIP architecture 492
25.1.2 Setting up development environment 495

25.1.2.1 DIP installation for C++ user under Linux 495
25.2 LHC beam info: DIP client/DIM server 496
25.3 LHC beam info: off-line cross-check 498

Part VII
The Transient Data Storage

Chapter 26
The Transient Data Storage 503

26.1 Introduction . 504
26.2 The Transient Data Storage architecture 504
26.3 The TDSM . . 504

26.3.1 The TDSM and the DAQ 506
26.3.2 Size of the output files 506
26.3.3 Links within the TDS and TDSM components 507
26.3.4 The AliEn spooler. 507

References . 511
List of Figures . . 513
List of Listings. . 515
List of Tables . 517
List of Acronyms . . 519
ALICE DAQ and ECS manual

xviii Contents
�

ALICE DAQ and ECS manual

�

Part I

DATE Reference
Manual
December 2010

ALICE DAQ Project
DATE V7

�

ALICE DAQ and ECS manual
1
DATE overview

This chapter gives an overview of the architecture of the ALICE DAQ system and
of its software framework called DATE. The features of the system are described,
with the components that implement such features. For each component, a brief
explanation of the underlying mechanism is given.

1.1 ALICE data-acquisition architecture2

1.2 DATE overview .3

1.3 DATE architectural strategies6

2 DATE overview
�

1.1 ALICE data-acquisition architecture

A broad view of the ALICE data–acquisition architecture is illustrated in Figure 1.1.

 1.1 DAQ architecture overview.Figure

GDC TDSM

CTP

LTU

TTC

FERO FERO

LTU

TTC

FERO FERO

LDCLDC

BUSY BUSY

Rare/All

Event
Fragment

Sub-event

Event

File

Storage Network
PDS

L0, L1a, L2

L0, L1a, L2

360 DDLs

D-RORCD-RORC

EDM

LDC

D-RORC D-RORC

Load Bal. LDC LDC

D-RORC D-RORC

HLT Farm

FEPFEP

DDL

H-RORC

10 DDLs

10 D-RORC

10 HLT LDC

120 DDLs

DA
DQM

DSS

Event Building Network

430 D-RORC

125 Detector LDC

75 GDC
30 TDSM

18 DSS60 DA/DQM

75 TDS

Archiving on Tape
in the Computing
Centre (Meyrin)

The detectors receive the trigger signals and the associated information from the
Central Trigger Processor (CTP), through a dedicated Local Trigger Unit (LTU)
interfaced to a Timing, Trigger and Control (TTC) system. The readout electronics
of all the detectors is interfaced to the ALICE standard Detector Data Links (DDL).
The data produced by the detectors (event fragments) are injected on the DDLs.

At the receiving side of the DDLs there are PCI-X or PCI-e boards, called DAQ
Read-Out Receiver Cards (D-RORC). The D-RORCs are hosted by PCs, the Local
Data Concentrators (LDCs). Each LDC can handle one or more D-RORCs. The
D-RORCs perform concurrent and autonomous DMA transfers into the PCs
memory, with minimal software supervision. In the LDCs, the event fragments
originated by the various D-RORCs are logically assembled into sub-events. The
role of the LDCs is twofold. Either it can take data isolated from the global system
for a test or a calibration run or it can ship the sub-events to a farm of PCs called
Global Data Collectors (GDCs), where the whole events are built (from all the
sub-events pertaining to the same trigger).

The D-RORCs include 2 DDL channels which can be used in two different ways:
either both as input from the detector or one as input and the other one as output to
the High-Level Trigger (HLT). In the later case, the data shipped by the detector are
copied to the HLT for software triggering or data compression.
ALICE DAQ and ECS manual

DATE overview 3
Besides having a DDL common to all the sub-detectors, the other major
architectural feature of the ALICE data acquisition is the event builder, which is
based upon an event building network.

The sub-event distribution is performed by the LDCs, which decide the destination
of each sub-event. This decision is taken by each LDC independently from the
others (no communication between the LDCs is necessary); the synchronization is
obtained using a data-driven algorithm. The algorithm is designed to fairly share
the load on the GDCs.

The event–building network does not take part in the decision about the
destination; it is a standard communication network supporting the TCP/IP
protocol. The event-building network is also used to distribute the HLT decisions
from the HLT LDCs to the detector LDCs where the decisions to accept or reject
sub-events are applied.

The role of the GDCs is to collect the sub-events, assemble them into whole events,
and record them to the Transient Data Storage (TDS) located at the experimental
area.

The data files recorded on the TDS are migrated by the TDS Managers (TDSM) onto
Permanent Data Storage (PDS) in the computing centre.

The services needed by the DAQ system itself such as the control or the database
are performed by the DAQ Services Servers (DSS). Additional servers are used to
run the Detector Algorithms (DA) or the Data Quality Monitoring (DQM). All these
servers are connected to the event–building network to exchange commands, status
and data messages with the other nodes of the system.

1.2 DATE overview

DATE (Data Acquisition and Test Environment) is a software system that performs
data-acquisition activities in a multi-processor distributed environment. DATE
fulfills the requirements of the ALICE data acquisition, therefore it has been
designed with scalability features that make it suitable for large systems, involving
hundreds of computers. Nevertheless, DATE can cope with a large variety of
configurations; in particular, it is well adapted to small laboratory systems as well,
where only few machines are used, or even just one. In that case, the DATE system
may be based on one single processor, which will then perform all the functions
(LDC, GDC, run control, monitoring, etc.).

The basic dataflow is organized along parallel data streams working independently
and concurrently, followed by a stage of event builders where data are merged and
eventually recorded as a complete event.

The conditions imposed to the hardware architecture in order to support DATE are
minimal:

a. The processors must be of the IA32 or IA64 families.

b. The operating system of all the processors must be Linux.

c. All the processors must be linked to a network supporting the TCP/IP stack
ALICE DAQ and ECS manual

4 DATE overview
�

and the socket library.

The readout program contains a piece of code that deals with the devices to be read.
This piece of code can be tailored to read any type of devices. ALICE, though, has
currently standardized its detector readout channel and uses the DDL and the
D-RORC; the software to handle this type of device is available and remains the
same for all the detectors using it.

In view of the ALICE upgrade, new types of readout links will be supported. The
support for Ethernet coupled with the UDP protocol has for example been added to
the DATE readout.

The event triggering is performed via the TTC. The readout program will collect all
the data from the DDLs, and the data structure superimposed by the DDL will
permit to identify the original blocks belonging to an event.

The DATE system, besides the data-flow function, provides many other features,
such as the ones described in the following paragraphs.

1.2.1 Parametrization of the hardware configuration

The hardware configuration of the system is described by declaring all the available
machines and assigning a role to them (LDC, GDC, run control, monitoring, etc.).
DATE uses a database repository to obtain this information. The repository is made
of records in a SQL database containing the description of all the entities and their
relationships. The setting up of the hardware configuration is achieved by editing
the records of the database.

1.2.2 Interactive setting up of the data-acquisition parameters

The running conditions of the system are described by selecting the machines
involved in the data acquisition (which may be a subset of the available machines)
and assigning the parameters associated with a given mode of operation. This
information is stored on disk and may be changed interactively.

1.2.3 Run control

An interactive program gives to the operator the opportunity to centrally control
the operations of all the machines involved in the data acquisition. The activities of
all the machines in the system proceed through pre-defined sequences with
synchronization check-points. Various hooks are provided to perform calibration
procedures and to submit foreign data into the event stream.

1.2.4 Load balancing

Large configurations, involving a farm of many GDCs, may need to smooth the
distribution of events to the various machines, in order to avoid that busy machines
slow down the system. A module called event-distribution manager (EDM) checks
the occupancy of each GDC and instructs the LDCs to dispatch the events to the
machines that are not crowded.
ALICE DAQ and ECS manual

DATE overview 5
1.2.5 Event monitoring

Analysis programs can receive online events, while the data acquisition is active. A
monitoring server makes copies of the events requested and dispatches them to the
client analysis process. The analysis process does not need to run on the machine
where the data are generated. Actually, the analysis can run on any remote
non-DATE machine, i.e. not declared as a node of the DATE system.

The same routine calls that provide the online events may be used to read offline
events that have been previously recorded.

1.2.6 Information reporting

All the information messages generated by the processes involved in the data
acquisition are centrally handled and made available to the operator via an
interactive browser.

1.2.7 Electronic Logbook

All the information relevant to the runs (used to keep track run-by-run of the
running conditions) may be generated by any process involved in the data
acquisition. It is centrally handled and made available to the operator via a Web
browser.

The electronic logbook can also be used to archive comments or observations made
by the people working at the experimental area.

1.2.8 Performance monitoring system

The performance of large systems should be closely monitored. The ALICE DAQ
uses the LEMON package to perform the collection of performance measurements,
their centralized handling, and their visualization using a Web browser.

1.2.9 Detector algorithms

A framework has been developed to support in the DAQ system the execution of
detector algorithms using data monitored or recorded.

1.2.10 Data Quality Monitoring

The AMORE framework has been developed to allow the execution of Data Quality
Monitoring (DQM) programs. These programs monitor physics data during the
physics run and accumulate plots that can be inspected asynchronously. The DQM
framework also provides an archiving of the plots at various stages of their lifetime
in order to ease their inspection and any investigation related to their evolution.
ALICE DAQ and ECS manual

6 DATE overview
�

1.3 DATE architectural strategies

Some of the leading ideas that have determined the DATE architecture are
described in the next paragraphs.

1.3.1 Protocol-less push-down strategy

Data are pushed down as soon as available. All the actors of the data acquisition,
from the detector electronics to the data storage, send the data through open
channels to the next processing stage, as soon as they finished their own processing.
The DDL and TCP/IP provide the flow control. A back-pressure mechanism
(x-on/x-off style) protects the system from congestions. This strategy avoids the
synchronization overheads and maximizes the throughput.

1.3.2 Detector readout via a standard handler

The fact of standardizing the transmission medium (presently the DDL) and the
data structure allows to provide the same piece of code (equipment code) to handle
all the detectors using the same medium. The readout system can be adapted to
changes of the hardware configuration without modifying the code.

The addition of a new medium such as Ethernet coupled with the UDP protocol has
been made possible by the development of a new readout equipment.

1.3.3 Light-weight multi-process synchronization strategy

Wherever process synchronization is required within a PC, no system services are
used, such as semaphores or message queues. An original technology has been
developed to be able to use much faster shared-memory mechanisms. This
technology is applicable each time the synchronization involves one single data
producer and one data consumer.

1.3.4 Common data-acquisition services

DATE provides a set of services, such as run control, event delivery to monitoring
programs, message logging, run bookkeeping, load balancing, performance
measurement and data quality monitoring. These services are common throughout
all the components of the system and are available to any additional piece of
software cooperating with DATE.

1.3.5 Detectors integration

The detectors developers usually provide the code dealing with the various
operation phases, such as calibration, initialization, run-down and readout. This
code can be fully integrated in DATE and makes use of all the services mentioned
above.
ALICE DAQ and ECS manual

DATE architectural strategies 7
1.3.6 DATE installation

A user-friendly DATE installation procedure, based on RPMs, produces a turn-key
system readily available to the user.
ALICE DAQ and ECS manual

8 DATE overview
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
2
DATE
configuration
parameters

This chapter gives an overview of the configurable parameters for a DATE
system.

2.1 DATE site parameters . 10

2.2 Base configuration . 10

2.3 Use of hostnames vs. IP addresses.. 11

10 DATE configuration parameters
�

2.1 DATE site parameters

Since DATE v6 only MySQL is used to store the DATE configuration parameters.
As a consequence, a single local configuration file is needed to run DATE (it stores
the database access parameters). All the other configuration items are stored in
MySQL, and edited with editDb (see Section 4.5) or some other package-specific
human interfaces. The configuration files are retrieved locally when necessary.

The only item that should still be put manually on each host running DATE is the
file ${DATE_SITE_PARAMS}. It contains a sequence of lines defining environment
variables. Every line contains the name of an environment variable followed by the
associated value. Lines starting with character # (followed by a space) are
comments and are not taken into account. The following variables must be defined
so that the configuration database is accessible:

• DATE_DB_MYSQL_HOST : IP name of the host where the MySQL server runs.

• DATE_DB_MYSQL_DB : MySQL database name.

• DATE_DB_MYSQL_USER : user name to access MySQL database.

• DATE_DB_MYSQL_PWD : password to access MySQL database.

2.2 Base configuration

To initially setup a minimal working DATE setup, it is recommended to call the
interactive script newDateSite.sh.

Answer the questions accordingly to your local system and you will have a basic
DATE environment running. This script includes the creation of the
DATE_SITE_PARAMS file described in Section 2.1 and the setup of some services
like the infoLogger system (Chapter 11) and logbook (Chapter 24). These
settings are in principle final and do not need to be changed afterwards. The script
also creates a minimal setup with a random software readout in a 1 LDC + 1 GDC
configuration on the same machine. It can then be extended according to your
needs.

Please note that for an initial DATE installation, some local system services (DIM
DNS, firewall, database engine, xinetd, ...) need to be configured. One may run the
script newMySQL.sh to initially create databases and accounts for DATE. One can
also use the script dateLocalConfig to configure local services. Finally, some
DATE daemons may be started with dateSiteDaemons and
runControl/start_daqDomains.sh. Extensive installation instructions are
available in separate guides:

• ALICE DAQ and ECS installation and configuration (hardware
and software) at Point 2 (available in the ALICE DAQ WIKI pages);

• ALICE DAQ and ECS installation and configuration guide for
external sites (available on the ALICE DAQ Web server).
ALICE DAQ and ECS manual

Use of hostnames vs. IP addresses. 11
Configuration information for roles, detectors, event-building rules, memory
banks, triggers and readout equipment is required to operate DATE.

The DATE utility editDb should be used to populate or edit configurations.
Chapter 4 describes the configuration of roles, detectors, banks, triggers, and event
building rules. Equipment-specific parameters are described in the corresponding
hardware chapters.

Additionnal package-specific configuration files or environment variables may be
stored in the database FILES � and ENVIRONMENT sections. Description of the files
or variables is done in the relevant packages documentation.

Some persistent DATE parameters are also stored in the database and not directly
accessible by users from editDb. This is for example the case of the runcontrol
parameters edited using the runControlHI � human interface, as described in
Chapter 14.

After a basic DATE_SITE system setup, the first parameters usually modified are:

• The ROLES database in order to add new machines or roles to the DATE system.
This is described in Chapter 4.

• The EQUIPMENTS configuration, to add and configure hardware readout
equipment. This is done in editDb, and the parameters are described in the
relevant hardware chapters, e.g. Section 7.2.4.4 for the RORC parameters.

• The runControl parameters, which define the behavior of the DATE
processes at run time: e.g. maximum number of events, enabling CDH checks,
enabling monitoring, etc. Note that the LOGLEVEL controlling the verbosity of
some DATE processes is also one of these settings. The global run options (e.g.
recording mode) may also be saved. This is described in Chapter 14.

• The monitoring configuration, e.g. to define adequate buffer sizes. These
settings are commented in Section 5.8.

• The mStreamRecorder configuration to record ROOT files, as described in
Section 10.5.

Other features, like the Transient Data Storage (Chapter 26) and the Detector
Algorithms (Chapter 22) are usually deployed only at the production area, and
therefore rarely need to be configured by end users.

2.3 Use of hostnames vs. IP addresses.

During the configuration of DATE, it is necessary to identify several hosts (DIM
DNS, database server, infoLogger host). These can be specified either by hostname
or by their IP address. The two methods are in principle equivalent. However, they
offer different runtime features that may have an impact on the operation of a
DATE site.

When hosts are specified by their hostname, this means that one or more calls to the
Internet Name Domain server (named) are done at run-time in order to associate
the name to the IP address of the machine. We recommend - whenever possible - to
use IP addresses rather than hostnames during the configuration of a DATE site to
ALICE DAQ and ECS manual

12 DATE configuration parameters
�

minimize queries to the IP name server, and avoid problems if it is unavailable or
slow.
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
3
Data format

This chapter describes the different event types used in DATE, the format of the
data produced in the LDCs (events and sub-events), and the format of the super
event which are built in the GDCs.

3.1 Conventions . 14

3.2 Base header and header extension 14

3.3 Streamlined and paged events 14

3.4 Collider and fixed target modes 18

3.5 The base event header . 19

3.6 The super event format . 31

3.7 The complete file format . 33

3.8 Decoding and monitoring on different platforms 34

3.9 The Common Data Header . 36

3.10 The equipment header. . 37

3.11 Paged events and DATE vectors 38

3.12 Data pools. . 41

14 Data format
�

3.1 Conventions

All symbols referred in the following pages are defined in the DATE include file
${DATE_COMMON_DEFS}/event.h. Programs using this file are also supposed to
be compiled using the DATE makefile rules appropriate to the host architecture.
The shell command date-config can be used - on all architecture compatible
with the full DATE kit - to get a list of the options required to compile programs
making use of the event.h definition file.

Several of the macros defined in the DATE environment perform some simple
run-time checks. These checks can be disabled by defining the compilation symbol
NDEBUG. When the checks are enabled, they may cause an early termination of the
process with an appropriate error message and the creation (if possible) of a core
dump file as soon as the basic correctness conditions are not met.

Three concepts used in this chapter are those of IDs, patterns and masks. An ID
is a number, belonging to a fixed range, that identifies one and only one entity in a
given set (e.g. a trigger class or a detector). A pattern is a sequence of bits with
one bit for each ID of a given set: it can have zero or more bits asserted. A mask is a
pattern with one and only one bit asserted. These concepts are, for example, used
in the definition of the eventTriggerPattern given in Section 3.5.7.

All sizes given in this chapter are expressed in bytes.

3.2 Base header and header extension

All DATE events are prefixed by an event header. This header is made of a first
mandatory part (the base header) and of an optional header extension.

The base header is completely defined by the eventHeaderStruct structure. All
the fields of the base header are initialized by DATE to predefined values. The base
header includes the size of the complete event, a unique pattern (the DATE event
magic number), the version of the eventHeaderStruct structure, all the fields
needed to identify the event (in type, origin, trigger set and detector set) and other
fields used for rule-driven criteria. A 64-bit pattern is also available to specify
user-defined attributes associated to the event.

A header extension can be appended to the base header: the size and the format of
the header extension is left to the data-acquisition system responsible.

3.3 Streamlined and paged events

LDCs must be able to handle synchronous and asynchronous equipments, with
either fixed or variable event sizes and with segmented or paged payloads. Two
different schemes have been made available: the streamlined events scheme and
the paged events scheme. Streamlined events support mainly serial synchronous
ALICE DAQ and ECS manual

Streamlined and paged events 15
channels to be read in strict sequence. Paged events are better suited for
asynchronous equipments to be read in parallel. One should select the scheme that
better fulfills the requirements of the DATE site.

Within the same run, each machine will handle events of the same type, e.g. only
streamlined or only paged events. It is forbidden to switch between modes within
one stream of events (online or offline). However, it is possible to have a DAQ
system where some LDCs handle paged events and some other LDCs handle
streamlined events.

DATE events at LDC level always have their payload partitioned into equipments.
The equipment is a logical entity controlling a (set of) physical input channel(s). All
equipments prefix their data with a standard equipmentHeaderStruct structure
designed to identify the equipment itself, to provide some standard description of
the channel and to associate some attributes to the payload.

GDCs do not produce paged events. Their format is based on UNIX I/O vectors (as
in the writev system call). GDCs do not support the concept of equipment. All
they do is to receive sub-events from the LDCs, eventually perform event building
functions (according to the event-building rules defined in the configuration of the
DATE site), add a super event header and send the resulting event to the recording
stage (see Section 3.6 for more details on this process). The format of the events at
the level of the GDCs is not described here.

3.3.1 Streamlined events

Streamlined events are made of a consecutive sequence of bytes, starting from the
base event header followed by the header extension (if present) and by the
equipments, one after the other. These events are designed to be read sequentially,
typically equipment after equipment. This is the natural approach towards network
channels or non-shared channels (such as RS232).

 3.1Figure Streamlined unextended event format

Base event header

struct eventHeaderStruct
+ EVENT_HEAD_BASE_SIZE

Payload

Equipment-based format
+ eventHeaderStruct.eventSize
ALICE DAQ and ECS manual

16 Data format
�

 3.2Figure Streamlined extended event format

Base event header

struct eventHeaderStruct
+ EVENT_HEAD_BASE_SIZE

Event header extension

user-defined format
+ eventHeaderStruct.eventHeadSize

Payload

Equipment-based format
+ eventHeaderStruct.eventSize

Multiple sequential channels can also be read in pure streamlined mode. The easier
approach is to read the channels one after the other, in strict synchronous sequence.
This requires the pre-allocation of an event buffer big enough to store the data
coming from all the equipments, to be eventually resized at the end of the readout
procedure. However, if the amount of data sent over each channel is known in
advance, it is possible to allocate the buffer needed for the full event at once,
calculate the offset of each equipment’s payload and start a parallel, asynchronous
readout from all the channels into the right location. Another option is to read all
channels in parallel in separate buffers and them combine then into one single
streamlined events using a follow-and-copy process. Streamlined events may be
quite difficult to modify.

3.3.2 Paged events

Paged events are made of multiple data segments or pages, containing (part of)
payloads coming from the input channel(s). This class of events are very efficient
for data-driven input channels (such as the DDL) and for parallel, asynchronous
input channels schemes, e.g. multiple serial lines. The logical organization of a
paged event, starting from the first-level vector used to represent it, is described in
Figure 3.3.
ALICE DAQ and ECS manual

Streamlined and paged events 17
 3.3 Paged event logical formatFigure

Event
header

Payload
descriptor

Equipment
descriptor

Equipment
descriptor

Equipment
descriptor

Extended
header

Equipment
payload

Equipment
payload

Second level
vector

Equipment
data (page N)

Equipment
data (page 2)

Equipment
data (page 1)

Equipment
payload

Paged events are made of a first-level vector including the event header, a payload
descriptor and a set of one or more equipment descriptors. The pages with the
actual data (extended header and payload) are described by various fields of the
first level vector. Note that both the extended header and the equipment payloads
are optional and may not be present in all paged events. A first level vector must
have at least one equipment descriptor.

The first-level vector has a number of components (and therefore a size) function of
the number of the equipments instantiated on the LDC. Its format is described in
Figure 3.4.
ALICE DAQ and ECS manual

18 Data format
�

 3.4 Paged event first-level vector formatFigure

Payload descriptor

struct vectorPayloadDescriptorStruct
+ EVENT_HEAD_BASE_SIZE +

Base event header

struct eventHeaderStruct
+ EVENT_HEAD_BASE_SIZE

Equipment descriptor(s)

struct equipmentDescriptorStruct
+ PAGED_EVENT_SIZE(eventHeaderStruct)

sizeof(struct vectorPayloaDescriptorStruct)

The actual payload (extended header and equipment payload) is only described by
the first-level vector. As a matter of fact, the entity pointed by the first-level vector
can itself be a vector called second-level vector, used to represent paged payloads
(such as the output from the DDL). In the example given in Figure 3.3, the first
equipment has created a paged event made of N pages and described by a second
level vector. Equipments creating segmented payloads can avoid the use of the
second level vector and let the first level vector point directly to the payload.

The representation could be extended beyond two levels of vectors (if this need
arises).

Paged events can be converted into streamlined events by algorithm of
follow-and-copy. This is the approach followed by the DATE recording library
where paged events are recorded (to file, pipes or over the network) in a strict
sequential manner (although data is not explicitly copied in the process).

Paged events allow easy manipulation. It is sufficient to update the pointer(s) to the
appropriate page(s) to modify selected portions of the payload. This avoid a
lengthy follow-and-copy process as in the case of streamlined events.

3.4 Collider and fixed target modes

DATE events can be identified in two different modes: COLLIDER and FIXED
TARGET. The main difference between the two modes is the way the event ID field
of the base event header is loaded and handled.

In COLLIDER mode, events are identified as described in Figure 3.5. The
components of the event ID are the period counter (software controlled), the
orbit counter (from the machine/trigger systems) and the bunch crossing number
(from the machine/trigger systems). The bunch crossing number directly comes
from the particle accelerator while the orbit counter is an entity still driven by the
machine that can be - from time to time - reset under software control. When this
happens, a new run period is started: this is identified by the period counter.
ALICE DAQ and ECS manual

The base event header 19
 3.5 Collider mode event identificationFigure

period counter
28b

orbit counter
24b

bunch crossing
12b

In FIXED TARGET mode the event ID is under full software control. The format is
described in Figure 3.6. This mode is compatible with both fixed-target and
stand-alone setups. In the first case, burst number and number in burst can be
included in the event ID. For stand-alone setups, only the number in run field
should be set: the burst number and number in burst fields can be zero.

 3.6Figure Fixed target mode event identification

number in run
32b

burst number
12b

number in burst
20b

Within the same stream of events it is not allowed to switch between different
modes. The ATTR_ORBIT_BC system attribute bit can be used to select the
encoding (collider if set, fixed target if unset) of the eventId. Different macros are
available to manipulate (initialize, load, compare, increment) event IDs of
equivalent type.

3.5 The base event header

A DATE event is always prefixed by a base event header, described by the
eventHeaderStruct structure. This structure include several fields that are
standard to all events - such as IDs, event type, system attributes - plus some more
static information used to identify the base header itself and its representation.

The structure of the base event header is described in Table 3.1.

Table 3.1 Base event header structure

Name Type Content Set by

eventSize eventSizeType total size of the
event

readout
eventBuilder

eventMagic eventMagicType unique DATE
event signature

readout
eventBuilder
ALICE DAQ and ECS manual

20 Data format
�

A program is included in the DATE distribution kit to dump the base header of any
event written in DATE format. This tool is available in the monitoring package and
it is called eventDump (see Section 5.6).

We will now describe the fields of the base event header and their associated
symbols and macros.

3.5.1 eventSize

It contains the total size of the event (base header, extended header, equipment
header(s) and payload(s)) in bytes. The size must be a multiple of 32 bits. For paged

eventHeadSize eventHeadSizeType size of the header
(base + extension)

readout
eventBuilder

eventVersion eventVersionType base event header
structure version

readout
eventBuilder

eventType eventTypeType type of event readout
eventBuilder

eventRunNb eventRunNbType number of the run
associated to the
event

readout
eventBuilder

eventId eventIdType unique event
identification

readout
eventBuilder

eventTriggerPattern eventTriggerPatternType level 2 trigger pat-
tern associated to
the event

readout
eventBuilder

eventDetectorPattern eventDetectorPatternType detector pattern
associated to the
event

readout
eventBuilder

eventTypeAttribute eventTypeAttributeType attributes associ-
ated to the event

readout
eventBuilder

eventLdcId eventLdcIdType ID of the LDC
source of the
event

readout
eventBuilder

eventGdcId eventGdcIdType ID of the GDC
source or destina-
tion of the event

readout
eventBuilder

eventTimestampSec eventTimestampSecType Timestamp at the
creation of the
event (seconds)

readout
eventBuilder
monitoring

eventTimestampUsec eventTimestampUsecType Timestamp at the
creation of the
event (microsec-
onds)

readout
eventBuilder
monitoring

Table 3.1 Base event header structure

Name Type Content Set by
ALICE DAQ and ECS manual

The base event header 21
events, this field shall contain the same value as for the eventSize field of the
streamlined version of the same event.

3.5.2 eventMagic

The eventMagic field contains a “magic” signature used for two purposes:

1. establish the correctness of the eventHeaderStruct, eventually
re-synchronizing a corrupted data stream,

2. determine the endianness of the event (header and payload) when this is
received over a binary data channel, possibly originating from an architecture
with different endianness (network, disk).

The two symbols EVENT_MAGIC_NUMBER and EVENT_MAGIC_NUMBER_SWAPPED
can be used to detect at run-time the need to apply endianness-correction
algorithms.

3.5.3 eventHeadSize

The eventHeadSize field contains the length in bytes of the event header (base +
extension). This length should be greater or equal to EVENT_HEAD_BASE_SIZE.
For paged events it is always equal to EVENT_HEAD_BASE_SIZE (paged events’
headers can be extended only via a pointer from the payload descriptor, as shown
in Figure 3.3). The size of the event header must be a multiple of 32 bits.

3.5.4 eventVersion

The eventVersion field provides the version ID of the base event header used to
create the event itself. The symbol EVENT_CURRENT_VERSION is available to
identify the event header structure as defined at compile time.

3.5.5 eventType

All DATE events have an associated type used to identify the content of the
payload. The possible event types are:

• START_OF_RUN

• START_OF_RUN_FILES

• START_OF_BURST

• PHYSICS_EVENT

• CALIBRATION_EVENT

• START_OF_DATA

• END_OF_DATA

• SYSTEM_SOFTWARE_TRIGGER_EVENT

• DETECTOR_SOFTWARE_TRIGGER_EVENT
ALICE DAQ and ECS manual

22 Data format
�

• END_OF_BURST

• END_OF_RUN_FILES

• END_OF_RUN

• EVENT_FORMAT_ERROR

The primary use of the event type field is to identify each type of event or record
and determine the type of processing to be applied. The event type is used for
example by the eventBuilder to determine whether the policy to be applied on a
given event (build, partial build or no-build).

The symbols EVENT_TYPE_MIN and EVENT_TYPE_MAX are defined to support
arrays and enumerated types. Arrays can be defined with
[EVENT_TYPE_MAX - EVENT_TYPE_MIN + 1] range and addressed as
[eventHeaderStruct.eventType - 1].

The macro EVENT_TYPE_OK can be used to test a possible event type, e.g.
EVENT_TYPE_OK(eventHeaderStruct.eventType) will return TRUE if the
content of the eventType field can be associated to one of the event types above.

The START_OF_RUN and END_OF_RUN events can (and should) have the system
attributes (ATTR_P_START and ATTR_P_END) set to point to the start and to the
end of each phase (see Section 3.7 for more information on this subject).

3.5.6 eventId

The eventId field must be handled according to the identification system in use
(COLLIDER or FIXED TARGET). The system attribute ATTR_ORBIT_BC shall be
set for COLLIDER mode and cleared for FIXED TARGET mode. Macros are
provided to handle the eventId field. Some macros apply only to one particular
mode while other macros can be used for any type of event.

If the ID is encoded in COLLIDER mode (ATTR_ORBIT_BC set), the following
macros can be used:

• LOAD_EVENT_ID(
 eventHeaderStruct.eventId,
 period,
 orbit,
 bunchCrossing)
load the given eventId with the given period, orbit and bunch crossing

• EVENT_ID_SET_BUNCH_CROSSING(
 eventHeaderStruct.eventId ,
 bunchCrossing)
set the bunch crossing field of the given eventId with the given value

• EVENT_ID_SET_ORBIT(eventHeaderStruct.eventId, orbit)
set the orbit field of the given eventId with the given value

• EVENT_ID_SET_PERIOD(eventHeaderStruct.eventId, period)
set the period field of the given eventId with the given value

• EVENT_ID_GET_BUNCH_CROSSING(eventHeaderStruct.eventId)
get the bunch crossing field of the given eventId

• EVENT_ID_GET_ORBIT(eventHeaderStruct.eventId)
ALICE DAQ and ECS manual

The base event header 23
get the orbit field of the given eventId

• EVENT_ID_GET_PERIOD(eventHeaderStruct.eventId)
get the period field of the given eventId

If the ID is encoded in FIXED TARGET mode (ATTR_ORBIT_BC cleared), the
following macros can be used:

• LOAD_RAW_EVENT_ID(
 eventHeaderStruct.eventId,
 numberInRun,
 burstNumber,
 numberInBurst)
load the given eventId with the given number in run, burst number and
number in burst

• EVENT_ID_SET_NB_IN_RUN(
 eventHeaderStruct.eventId,
 numberInRun)
set the number in run field of the given eventId with the given value

• EVENT_ID_SET_BURST_NB(
 eventHeaderStruct.eventId,
 burstNumber)
set the burst number field of the given eventId with the given value

• EVENT_ID_SET_NB_IN_BURST(
 eventHeaderStruct.eventId,
 numberInBurst)
set the number in burst field of the given eventId with the given value

• EVENT_ID_GET_NB_IN_RUN(eventHeaderStruct.eventId)
get the number in run field of the given eventId

• EVENT_ID_GET_BURST_NB(eventHeaderStruct.eventId)
get the burst number field of the given eventId

• EVENT_ID_GET_NB_IN_BURST(eventHeaderStruct.eventId)
get the number in burst field of the given eventId

The following macros can be used for all encoding schemes:

• EQ_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
TRUE if eventIdA is equal to eventIdB

• LT_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
TRUE if eventIdA is smaller (older) than eventIdB

• GT_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
TRUE if eventIdA is greater (more recent) than eventIdB

• LE_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
ALICE DAQ and ECS manual

24 Data format
�

TRUE if eventIdA is smaller (older) or equal to eventIdB

• GE_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
TRUE if eventIdA is greater (more recent) or equal to eventIdB

• COPY_EVENT_ID(
 eventHeaderStruct.eventIdFrom,
 eventHeaderStruct.eventIdTo)
copy eventIdFrom into eventIdTo

• ZERO_EVENT_ID(eventHeaderStruct.eventId)
clears the given eventId by setting all fields to zero

• ADD_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
load eventIdA with the sum of eventIdA and eventIdB: this macro should
be used with a eventIdB all zero excepted one field (it makes little sense to use
it with complex patterns, although the macro will still do the requested
operation)

• SUB_EVENT_ID(
 eventHeaderStruct.eventIdA,
 eventHeaderStruct.eventIdB)
load eventIdA with the difference between eventIdA and eventIdB: this
macro should be used with a eventIdB all zero excepted one field (it makes
little sense to use it with complex patterns, although the macro will still do the
requested operation)

3.5.7 eventTriggerPattern

The eventTriggerPattern field contains the level 2 trigger pattern as published
by the trigger system (referred as L2Class[50 .. 1]). Its size is given by the
symbols EVENT_TRIGGER_PATTERN_BYTES (number of 8 bit entities) and
EVENT_TRIGGER_PATTERN_WORDS (number of 32 bit entities).

The trigger pattern can be either validated or invalidated. In the first form, it is
assumed to contain a valid pattern and can be used to activate trigger-based rules,
such as event building rules or monitoring selection criteria. In the second form it
cannot be used to activate trigger-based rules although its content can still be
loaded according to requirements. In both cases an arbitrary number of trigger
classes (from none to all of them) can be set in a trigger pattern.

The eventTriggerPattern can be used to store trigger IDs (here referenced as
triggerId) in the range
[EVENT_TRIGGER_ID_MIN .. EVENT_TRIGGER_ID_MAX] (currently [0 .. 49]
which correspond to the number of trigger classes that can be used in ALICE). For
each trigger ID we have one and only one trigger mask (a set of bits with one and
only one bit set, where each bit corresponds to one trigger class) that can be used to
create, handle and test trigger patterns (sets of bits with zero or more bits set, where
each bit corresponds to one trigger class).
ALICE DAQ and ECS manual

The base event header 25
The following macros are available to handle trigger patterns:

• ZERO_TRIGGER_PATTERN(eventHeaderStruct.eventTriggerPattern)
clear and invalidate the given trigger pattern

• COPY_TRIGGER_PATTERN(
 eventHeaderStruct.eventTriggerPatternFrom,
 eventHeaderStruct.eventTriggerPatternTo)
copy the “from” pattern into the “to” pattern and, if the “from” pattern is
validated, validate the “to” pattern

• SET_TRIGGER_IN_PATTERN(
 eventHeaderStruct.eventTriggerPattern,
 triggerId)
set the bit corresponding to the given triggerId in the given trigger pattern

• CLEAR_TRIGGER_IN_PATTERN(
 eventHeaderStruct.eventTriggerPattern,
 triggerId)
clear the bit corresponding to the given triggerId in the given trigger pattern

• FLIP_TRIGGER_IN_PATTERN(
 eventHeaderStruct.eventTriggerPattern,
 triggerId)
flip (xor) the status of the bit corresponding to the given triggerId in the
given trigger pattern

• TEST_TRIGGER_IN_PATTERN(
 eventHeaderStruct.eventTriggerPattern,
 triggerId)
TRUE if the bit corresponding to the given triggerId is set in the given trigger
pattern

• VALIDATE_TRIGGER_PATTERN(
 eventHeaderStruct.eventTriggerPattern)
validate the given trigger pattern

• INVALIDATE_TRIGGER_PATTERN(
 eventHeaderStruct.eventTriggerPattern)
invalidate the given trigger pattern

• TRIGGER_PATTERN_VALID(
 eventHeaderStruct.eventTriggerPattern)
TRUE if the given trigger pattern has been validated

• TRIGGER_PATTERN_OK(eventHeaderStruct.eventTriggerPattern)
TRUE if the given trigger pattern is syntactically correct

3.5.8 eventDetectorPattern

The eventDetectorPattern field contains information based upon the
L2a message, published by the ALICE trigger system, associated to the given
event. For physics events it contains the detector pattern corresponding to the
L2Cluster[6..1] field. For software triggers (calibration, detector software
trigger and system software trigger events) it contains the
L2Detector[24..1] field. The size of the eventDetectorPattern field is
ALICE DAQ and ECS manual

26 Data format
�

given by the symbols EVENT_DETECTOR_PATTERN_BYTES (number of 8 bit
entities) and EVENT_DETECTOR_PATTERN_WORDS (number of 32 bit entities).

The detector pattern can be either validated or invalidated. In the first form, it is
assumed to contain a valid pattern and can be used to activate detectorId-based
rules, such as event building rules. In the second form it cannot be used to activate
detectorId-based rules although its content can still be loaded according to
requirements. In both cases an arbitrary number of detectors (from none to the
whole lot) can be set in a detector pattern.

The pattern is a set of bits, each corresponding to one and only one detectorId
(one detector ID for each detector). Detector IDs belong to range
[EVENT_DETECTOR_ID_MIN .. EVENT_DETECTOR_ID_MAX] (currently [0 .. 30]).
The range [EVENT_DETECTOR_ID_MIN .. EVENT_DETECTOR_HW_ID_MAX] is
reserved for HW detectors (to be specified in the Common Data Header) while
the range (EVENT_DETECTOR_HW_ID_MAX. .. EVENT_DETECTOR_ID_MAX] is
reserved to SW detectors. A detectorPattern is a set of bits with one and only
one bit for each detectorId, bit that can be either one (TRUE) or zero (FALSE). A
detectorMask is a detectorPattern with one and only one bit set.

The following macros are available to handle detector patterns:

• ZERO_DETECTOR_PATTERN(
 eventHeaderStruct.eventDetectorPattern)
clear and invalidate the given detector pattern

• COPY_DETECTOR_PATTERN(
 eventHeaderStruct.eventDetectorPatternFrom,
 eventHeaderStruct.eventDetectorPatternTo)
copy the “from” detector pattern into the “to” detector pattern and - if the
“from” detector pattern is validated, validate the “to” detector pattern

• SET_DETECTOR_IN_PATTERN(
 eventHeaderStruct.eventDetectorPattern,
 detectorId)
set the bit corresponding to the given detectorId in the given detector
pattern

• CLEAR_DETECTOR_IN_PATTERN(
 eventHeaderStruct.eventDetectorPattern,
 detectorId)
clear the bit corresponding to the given detectorId in the given detector
pattern

• FLIP_DETECTOR_IN_PATTERN(
 eventHeaderStruct.eventDetectorPattern,
 detectorId)
flip (xor) the status of the bit corresponding to the given detectorId in the
given detector pattern

• TEST_DETECTOR_IN_PATTERN(
 eventHeaderStruct.eventDetectorPattern,
 detectorId
TRUE if the bit corresponding to the given detectorId is set in the given
detector pattern

• VALIDATE_DETECTOR_PATTERN(
 eventHeaderStruct.eventDetectorPattern)
ALICE DAQ and ECS manual

The base event header 27
validate the given detector pattern

• INVALIDATE_DETECTOR_PATTERN(
 eventHeaderStruct.eventDetectorPattern)
invalidate the given detector pattern

• DETECTOR_PATTERN_VALID(
 eventHeaderStruct.eventDetectorPattern)
TRUE if the given detector pattern has been validated

• DETECTOR_PATTERN_OK(eventHeaderStruct.eventDetectorPattern)
TRUE if the given detector pattern is syntactically correct

The following compilation symbols are defined:

• EVENT_DETECTOR_ID_MIN set to 0

• EVENT_DETECTOR_ID_MAX set to 30

3.5.9 eventTypeAttribute

Every event has two sets of attributes available: the system attributes and the user
attributes. The system attributes are common to all events and are usually set by the
standard DATE software. The user attributes are specific to a data-acquisition
system, to an LDC or to an equipment: their definition is left to the responsible for
the DAQ system. All attributes can be used to select events for monitoring
purposes.

The standard DATE symbols include three set of macros and symbols. One set is
dedicated to system attributes. The second set is for user attributes. A third set
manipulates all attributes at once: this can be useful for global operations - such as
reset of a pattern - but should be used with care for other types of operations. The
third set of macros sees the system attributes as an extension of the user attributes,
as if they would physically extend it beyond its physical boundaries.

Every attribute is identified by a attributeId, a unique number defining one of
the allowed attributes. An attribute pattern - defined by the
eventTypeAttribute data type - is a set of bits with zero or more bits (each
corresponding to one and only one attributeId) asserted. System attributes are
defined by special DATE symbols while user attributes are, at the base, defined by
their positional number (they can be re-defined as site-dependent symbols is the
need arises).

The following symbols and macros are available:

• SYSTEM_ATTRIBUTES_BYTES/SYSTEM_ATTRIBUTES_WORDS
number of bytes (8 bits) and words (32 bits) allocated to system attributes

• USER_ATTRIBUTES_BYTES/USER_ATTRIBUTES_WORDS
number of bytes (8 bits) and words (32 bits) allocated to user attributes

• ALL_ATTRIBUTES_BYTES/ALL_ATTRIBUTES_WORDS
number of bytes (8 bits) and words (32 bits) allocated to all attributes (system
and user)

• RESET_ATTRIBUTES(eventHeaderStruct.eventTypeAttribute)
reset (clear) all attributes (system and user) of the given attribute pattern
ALICE DAQ and ECS manual

28 Data format
�

• SET_ANY_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
set the bit corresponding to the given attributeId (system or user) in the
given attribute pattern

• CLEAR_ANY_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute, attributeId)
clear the bit corresponding to the given attributeId (system or user) in the
given attribute attribute pattern

• FLIP_ANY_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute, attributeId)
flip (xor) the bit corresponding to the given attributeId (system or user) of
the given attribute pattern

• TEST_ANY_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
return TRUE is the bit corresponding to the given attributeId (system or
user) of the given attribute pattern is set

• COPY_ALL_ATTRIBUTES(
 eventHeaderStruct.eventTypeAttributeFrom,
 eventHeaderStruct.eventTypeAttributeTo)
copy the “from” attribute pattern to the “to” attribute pattern

• RESET_SYSTEM_ATTRIBUTES(
 eventHeaderStruct.eventTypeAttribute)
reset (clear) the system attributes of the given attribute pattern, leaving the user
attributes unmodified

• SET_SYSTEM_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
set the bit corresponding to the given attributeId (system) in the given
attribute pattern

• CLEAR_SYSTEM_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
clear the bit corresponding to the given attributeId (system) in the given attribute
pattern

• FLIP_SYSTEM_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
flip (xor) the bit corresponding to the given attributeId (system) of the
given attribute pattern

• TEST_SYSTEM_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
return TRUE if the bit corresponding to the given attributeId (system) is set
in the given attribute pattern

• COPY_SYSTEM_ATTRIBUTES(
 eventHeaderStruct.eventTypeAttributeFrom,
 eventHeaderStruct.eventTypeAttributeTo)
ALICE DAQ and ECS manual

The base event header 29
copy the “from” system attributes to the “to” system attributes leaving the user
attributes unmodified

• SYSTEM_ATTRIBUTES_OK(eventHeaderStruct.eventTypeAttribute)
check the validity of the system attributes of the given attribute pattern

• RESET_USER_ATTRIBUTES(eventHeaderStruct.eventTypeAttribute)
reset (clear) the user attributes of the given attribute pattern, leaving the system
attributes untouched

• SET_USER_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
set the bit corresponding to the given attributeId (user) in the given
attribute pattern

• CLEAR_USER_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
clear the bit corresponding to the given attributeId (user) in the given
attribute pattern

• FLIP_USER_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
flip (xor) the bit corresponding to the given attributeId (user) in the given
attribute pattern

• TEST_USER_ATTRIBUTE(
 eventHeaderStruct.eventTypeAttribute,
 attributeId)
return TRUE if the bit corresponding to the given attributeId (user) is set in
the given attribute pattern

• COPY_USER_ATTRIBUTES(
 eventHeaderStruct.eventTypeAttributeFrom,
 eventHeaderStruct.eventTypeAttributeTo)
copy the user field of the “from” attribute pattern into the user field of the “to”
attribute pattern leaving the system attributes unmodified

The following system attributes are currently defined at the DATE level:

• ATTR_P_START
phase start, used for START_OF_RUN and END_OF_RUN events

• ATTR_P_END
phase end, used for START_OF_RUN and END_OF_RUN events

• ATTR_START_OF_RUN_START
synonym for ATTR_P_START

• ATTR_START_OF_RUN_END
synonym for ATTR_P_END

• ATTR_END_OF_RUN_START
synonym for ATTR_P_START

• ATTR_END_OF_RUN_END
synonym for ATTR_P_END
ALICE DAQ and ECS manual

30 Data format
�

• ATTR_EVENT_SWAPPED
set when the base header of the given event has been swapped (different
endianness). The header extension and payload of the events have not been
swapped

• ATTR_EVENT_PAGED
set for paged event, unset for streamlined events

• ATTR_SUPER_EVENT
set for events created on GDCs

• ATTR_ORBIT_BC
set when the eventId follows the COLLIDER mode encoding, not set for
FIXED TARGET mode encoding

• ATTR_KEEP_PAGES
set when the data pages (carrying the payload) of the event are not to be
disposed after the event is recorded

• ATTR_HLT_DECISION
set when the payload of the event starts with an HLT Decision record

• ATTR_BY_DETECTOR_EVENT
set when the event has been created via a “monitoring by detector” scheme

• ATTR_EVENT_DATA_TRUNCATED
set when the payload of the event has been truncated due to insufficient buffer
space

• ATTR_EVENT_ERROR
set if the base header of the given event is syntactically incorrect

3.5.10 eventLdcId and eventGdcId

The eventLdcId field contains the ID (according to the DATE role database) of the
LDC source of the event. The field is loaded with VOID_ID if the event has not been
created on a LDC.

The eventGdcId contains the ID (according to the DATE role database) of the
GDC source of the event or of the GDC destination of the event.

The symbols HOST_ID_MIN and HOST_ID_MAX are available, as well as the symbol
VOID_ID. No LDC or GDC can be assigned the ID VOID_ID.

3.5.11 eventTimestampSec and eventTimestampUsec

The eventTimestampSec and eventTimeStampUsec fields contain the host
system time taken the moment the event is created (trigger arrived on the LDC, first
sub-event received on the GDC, event ready for monitoring by detector) split in
two 32-bit parts: seconds (eventTimestampSec) and milliseconds
(eventTimeStampUsec). The eventTimestampSec field may eventually have
been truncated to 32 bit (if the size of the “time_t” unit on the generating host is >
32 bit) and must be assigned to a native time_t entity prior of using it (see below).
For more system-specific details concerning these two fields, check the definition of
the system call “gettimeofday” and of the system structure “timeval”. These
ALICE DAQ and ECS manual

The super event format 31
fields can also be used with the standard Unix system library for printing and for
handling (see the definition of the system call “time”).

For portability issues across different platforms, this field must be copied into a
variable of type “time_t” - as defined by the <time.h> system include file -
before using it. Failure to do so may give unexpected results and may terminate the
calling process. This procedure takes care of issues such as sizing and signess of the
two fields.

The content of these fields may be inaccurate due to clock drifts, system clock
adjustment, and latencies (hardware and software), both within the same machine
and across different machines. If a more accurate timestamp is required, we
recommend to use the LHC clock instead (as available in the eventId field).

3.6 The super event format

The output of a DATE system is a stream of events. These can be created either by a
LDC or by a GDC. In the second case, the events are marked as super events.
Super events have the same structure as events or sub-events: their payload
however is guaranteed to contain a series of one or more sub-events.

The data format structure described before applies to sub-events and to super
events. Each event will include a header and a data block. In the cases of a super
event assembled by the eventBuilder, the data block is itself subdivided into
sub-events. Each sub-event will include a header and a data block. The
eventBuilder assembles the sub-events pertaining to the same event and
prepends one header relative to the complete event. An example of this
representation, with two LDCs (IDs 5 and 7) merging on one GDC (ID 1) is shown
in Figure 3.7.

The sub-event refers here to the data read-out by one LDC and assembled later on
by one GDC. The super event refers here to the full set of data collected by a DAQ
system for an event uniquely identified by a eventType-eventId pair.

Events can be decoded using the same algorithm. Super events, however, can have
the same algorithm applied to their payload, where the payloads split into blocks of
one sub-event each.
ALICE DAQ and ECS manual

32 Data format
�

 3.7 The full event formatFigure

eventSize: 400

eventType: PHYSICS

eventTriggerPattern: 1

eventDetectorPattern: 1+2

eventId: 0/0/1

eventLdcId: 5

eventGdcId: 2

eventSize: 120

eventType: PHYSICS

eventTriggerPattern: 1

eventDetectorPattern: 1+2

eventId: 0/0/1

eventLdcId: 7

eventGdcId: 2

eventSize:

eventType: PHYSICS

eventTriggerPattern: 1

eventDetectorPattern: 1+2

eventId: 0/0/1

eventTypeAttribute:

eventGdcId: 2

eventSize: 400

eventType: PHYSICS

eventTriggerPattern: 1

eventDetectorPattern: 1+2

eventId: 0/0/1

eventLdcId :5

eventGdcId: 2

eventSize: 120

eventType: PHYSICS

eventTriggerPattern: 1

eventDetectorPattern: 1+2

eventId: 0/0/1

eventLdcId: 7

eventGdcId: 2

400 +
120 +

EVENT_HEAD_BASE_SIZE

eventLdcId: VOID_ID

ATTR_SUPER_EVENT
PayloadA

PayloadB

PayloadA

PayloadB

eventHeadSize:
EVENT_HEAD_BASE_SIZE
ALICE DAQ and ECS manual

The complete file format 33
3.7 The complete file format

The Table 3.2 shows the sequence of records constituting a complete DATE raw
data file.

Table

Event type Event attribute Comments

START_OF_RUN ATTR_P_START Unique

START_OF_RUN_FILES Zero or more records

START_OF_RUN ATTR_P_END Unique

START_OF_BURST Optional, unique per each burst

START_OF_DATA Zero or one record

PHYSICS_EVENT Zero or more records

CALIBRATION_EVENT Zero or more records

SYSTEM_SOFTWARE_
TRIGGER_EVENT

Zero or more records

DETECTOR_SOFTWARE_
TRIGGER_EVENT

Zero or more records

END_OF_DATA Zero or one record

END_OF_BURST Optional, unique per each burst

END_OF_RUN ATTR_P_START Unique

END_OF_RUN_FILES Zero or more records

END_OF_RUN ATTR_P_END Unique

 3.2 The successive list of records in a data file generated by DATE

Of the above events, only the START_OF_RUN*1 and END_OF_RUN*2 are to be
found in all runs. It is possible to have empty runs (without START_OF_DATA,
END_OF_DATA, PHYSICS, CALIBRATION, SYSTEM_SOFTWARE_TRIGGER
orDETECTOR_SOFTWARE_TRIGGER events). START_OF_BURST and
END_OF_BURST events shall be used only when burst-like beam structure is
available (typical of fixed target installations).

1. START_OF_RUN with ATTR_P_START and ATTR_P_END and START_OF_RUN_FILES
2. END_OF_RUN with ATTR_P_START and ATTR_P_END and END_OF_RUN_FILES
ALICE DAQ and ECS manual

34 Data format
�

3.8 Decoding and monitoring on different
platforms

Information of all kind is exchanged between computers’ memories. The way these
computers order their memory may differ. Most of the times, they will follow either
the Little-Endian scheme or the Big-Endian scheme [13]. Little-Endian (LE)
computers assign bit 0 to the Least Significant Byte (LSB) of their word and the top
bit to the Most Significant Byte (MSB) of their word. Big-Endian (BE) computers do
just the opposite: bit 0 is in the MSB and the top bit is in the LSB.

It is evident that exchanging data between LE and BE computer (either via network
channels or through files - shared or on permanent media) can create several
problems when memory ordering becomes important. Due to efficiency and
practical constraints, data acquisition systems based on DATE will have to handle
transfer of data between LE and BE computers on their own and on a case-by-case
basis.

The conversion is necessary every time an event is decoded on a platform of
different endianness from the platform where the event was created. A short,
non-exhaustive list of platforms that could take part in such a process is given in
Table 3.3.

 3.3 Commonly used platforms and their endiannessTable

Platform Endianness type

Intel (x86, Pentium) Little-Endian

COMPAQ (HP) ALPHA Little-Endian

Motorola PPC Big-Endian

Sun SPARC Big-Endian

HP PA-RISC Big-Endian

SGI IRIX Big-Endian

IBM RS6000 Big-Endian

Programs decoding raw events may have to detect the need for swapping. If
portability is not an issue (programs will always run on the same type of platform
and data will always be generated on the same type of platform) a rigid swapping
policy - if needed - can be systematically applied (always swap events without
checking). Programs that may run on different platforms (e.g. generic monitoring
programs or roaming programs who may migrate from computer to computer) will
have to check on the fly for the appropriate swapping policy.

When data is transferred via a DATE library (monitoring or eventBuilder), a
check is always performed on the header of all the events. If the need for swapping
is detected, the DATE library adjusts the event header and sets the
ATTR_EVENT_SWAPPED bit of the type field accordingly. Please note that only the
event header is “adjusted”: the data portion of the event remains in its original
ALICE DAQ and ECS manual

Decoding and monitoring on different platforms 35
status. Monitoring programs can use the ATTR_EVENT_SWAPPED bit to trigger
their internal swapping algorithm and correct the data portion of the event.

When data is fetched directly from a DATE stream (pipe, file or socket), then
programs should check the magic field of the event header. When this field is equal
to EVENT_MAGIC_NUMBER no swapping is needed. When this field is set to
EVENT_MAGIC_NUMBER_SWAPPED swapping of the event header as well as of the
event data will be needed.

Examples of these two checks can be found in Listing 3.1.

 3.1 Detecting swapping of the event dataListing

1: /*** Examples of detection of different endianness data ***/
2: struct eventHeaderStruct header;
3:
4: /* Load the header structure (not shown) */
5:
6: if (TEST_SYSTEM_ATTRIBUTE(header.eventTypeAttribute,

 ATTR_EVENT_SWAPPED))
7: printf(“Swapping needed (SWAPPED bit)\n”);
8:
9: if (header.eventMagic == EVENT_MAGIC_NUMBER_SWAPPED)
10: printf(“Swapping needed (MAGIC_SWAPPED)\n”);

Special situations may arise when LDCs and GDCs are of different endianness. In
this case, the eventBuilder process detects the need for swapping and adjusts the
sub-event header (setting the ATTR_EVENT_SWAPPED bit of the sub-event header type
field). As not all the LDCs may be of the same type, a different swapping policy may
have to be applied on a sub-event by sub-event basis.

How to cope with the swapping of data depends on the content of the event itself.
Due to the way events are transferred (via network channels, files or on permanent
data storage), we must apply different treatment for 8 bit entities (characters,
RS-232, small I/O channels), 16 bit entities (such as CAMAC data), 32 bit entities
(DATE event headers, VMEbus, PCI, wide I/O channels) and 64 bit entities (wide
PCI, very wide I/O channels). In our experience, 8 bit entities do not need any
swapping; bigger data entities (16, 32, 64 bit) need some sort of conversion that
depends on the data internal structure.

To facilitate the swapping process, the DATE monitoring library provides the
monitorSetSwap entry. This entry will apply (if needed) the given swap policy
to entire events, assuming they contain only and always 8, 16 or 32 bit entities.
Events with non-uniform data content must be swapped with ad-hoc algorithms.
We suggest to write a small data file with a couple of good examples of events and
debug the decoding/monitoring swapping scheme using this file, then move to the
production platform. We also strongly recommend to always check for the need of
the swapping of data (using one of - or both - the methods illustrated in Listing 3.1),
as the same stream may take different routes and therefore undergo to the
swapping process more than once.
ALICE DAQ and ECS manual

36 Data format
�

3.9 The Common Data Header

All events sent over the ALICE DDL must be prepended by a Common Data
Header as defined in [2] and refined in [15].

The main component of the definitions dedicated to the Common Data Header is
the structure commonDataHeaderStruct, defined in Table 3.4.

 3.4 Common data header structureTable

Name Type Content

cdhBlockLength unsigned:32 Length of the block

cdhVersion unsigned:8 Version ID of the CDH

cdhL1TriggerMessage unsigned:10 Level 1 trigger message

cdhEventId1 unsigned:12 Bunch-crossing field of the event ID

cdhEventId2 unsigned:24 Orbit-number field of the event ID

cdhMiniEventId unsigned:12 BC counter at the moment of the L1 trigger
signal

cdhBlockAttributes unsigned:8 Attributes of the block

cdhParticipatingSubDetectors unsigned:24 Pattern of sub-detectors

cdhStatusAndErrorBits unsigned:16 Status and error bits

cdhTriggerClassesHigh unsigned:18 Trigger classes (high 18 bits)

cdhTriggerClassesLow unsigned:32 Trigger classes (low 32 bits)

cdhRoiHigh unsigned:32 Region Of Interest (high 32 bits)

cdhRoiLow unsigned:4 Region Of Interest (low 4 bits)

All the definitions given in the table are relative for Little-Endian architectures. All
fields can be directly handled by 32- and 64-bit CPUs, including handling of bit
patterns and bit masks. All symbols ending with a _BIT suffix refer to a bit number
(LSB:0).

The size of the common data header structure is defined in the compilation
constant CDH_SIZE.

The structure contains several fields that must be set to zero. Those fields are not
specified in the above table but can be found in the definitions given by the DATE
event.h include file. For compatibility with future versions of the Common Data
Header, we recommend - for newly allocated structures - to zero the whole
structure and then set/update the fields that have to be set/updated. Using this
method, the Must Be Zero fields and the not handled fields will always be zeroed,
independently from their location and from their definition.
ALICE DAQ and ECS manual

The equipment header 37
3.9.1 Common Data Header version

The version of the Common Data Header as defined during the compilation of the
handling module is given in the constant CDH_VERSION. This constant is an
incremental number and can be used for arithmetic comparisons. New versions of
the Common Data Header will be marked with newer version IDs.

Code setting and/or using the common data header should always check the
version ID found in a common data header vs. the version ID defined during the
compilation stage. When a mismatch is found, this must trigger either an error
condition or (if possible) a translation between the two versions.

3.9.2 Status and Error bits

The status and error bits - given in the cdhStatusAndErrorBits field of the
commonDataHeaderStruct structure - can - for the Common Data Header
version 1 - carry the information as given in Table 3.5.

 3.5 Common Data Header Status and Error bitsTable

Name
Status/
Error

Content

CDH_TRIGGER_OVERLAP_ERROR_BIT Error L1 received while processing another L1

CDH_TRIGGER_MISSING_ERROR_BIT Error L1 received when no L0 has been
received

CDH_CONTROL_PARITY_ERROR_BIT Error Control parity error (instruction and/or
address)

CDH_DATA_PARITY_ERROR_BIT Error Data parity error

CDH_FEE_ERROR_BIT Error Front-end electronics error

CDH_TRIGGER_INFORMATION_UNAVAILABLE_BIT Status Trigger information unavailable

CDH_HLT_DECISION_BIT Status HLT decision available in payload

CDH_HLT_PAYLOAD_BIT Status HLT payload follows

CDH_DDG_PAYLOAD_BIT Status DDG payload follows

The assertion of the CDH_HLT_DECISION_BIT implies the assertion of the
CDH_HLT_PAYLOAD_BIT bit. Events whose Common Data Header
CDH_HLT_DECISION_BIT status bit is set while the CDH_HLT_PAYLOAD_BIT is
not set are considered wrong and must be rejected.

3.10 The equipment header

An LDC can include one or more equipments. Each equipment is associated to one
logical input channel, usually paired with one physical channel. All DATE events
ALICE DAQ and ECS manual

38 Data format
�

must describe the equipments contributing to the payload. This is done using the
equipment header structure.

The structure of the equipmentHeaderStruct structure is described in Table 3.6.

 3.6 Equipment header structureTable

Name Type Content

equipmentSize equipmentSizeType total size of the payload

equipmentType equipmentTypeType type of the equipment

equipmentId equipmentIdType ID of the equipment

equipmentTypeAttribute equipmentTypeAttributeType attributes of the payload

equipmentBasicElementSize equipmentBasicElementSize-
Type

size of the basic element for
the equipment

We will now review the individual fields of the equipment header structure.

3.10.1 equipmentSize

This field contains the combined size of the payload created by the equipment. This
size does not include the equipment header whose size is fixed. The value should
be aligned to a 32 bits boundary.

3.10.2 equipmentType/equipmentId

The type and ID of the equipment as defined in the DATE site configuration.

3.10.3 equipmentTypeAttribute

The type attributes associated to the equipment. The same rules, symbols and
macros as for the eventTypeAttribute are applicable.

3.10.4 equipmentBasicElementSize

The size of the basic element accepted by the equipment itself. This field is mainly
used to adjust the content of the payload when crossing endianness boundaries.

3.11 Paged events and DATE vectors

DATE paged events must provide two main capabilities:

a. support for multi-page payloads with multiple data pools
ALICE DAQ and ECS manual

Paged events and DATE vectors 39
b. support for efficient exchange of events between different processes

To achieve these capabilities the eventVectorStruct entity has been defined as
by Table 3.7.

 3.7 Event vector structureTable

Name Type Content

eventVectorBankId eventVectorBankIdType ID of the bank supporting the
pointed entity

eventVectorPointsToVector unsigned type of the pointed entity

eventVectorSize eventVectorSizeType size of the pointed entity

eventVectorStartOffset eventVectorOffsetType start offset of the pointed entity

The eventVectorStruct is used to point to an entity, vector or payload. It fully
describes the pointed entity. A NULL vector has eventVectorSize set to zero.

Entities are pointed by a bankId-startOffset pair: the bank ID is a unique identifier
defined by the DATE database/banksManager packages according to the
run-time configuration of the DATE site.

When the pointed entity is a vector, the eventVectorPointsToVector field of
the pointer is TRUE and the eventVectorSize contains the number of entries of
the pointed vector.

When the pointed entity is a data page, the eventVectorPointsToVector of the
pointer is FALSE and the eventVectorSize contains the size of the data page.

An example of use of the above structure is given inFigure 3.8 where an event with
6 payloads spreading over two banks is described. The event is made of PayloadA
through PayloadF for a total of 1652 bytes.
ALICE DAQ and ECS manual

40 Data format
�

 3.8 Example of use of DATE event vectorsFigure

bankId 0

Bank 0

pointsToVector: TRUE

size: 3

startOffset: 20

bankId 2

pointsToVector: TRUE

size: 2

startOffset: 600

bankId 1

pointsToVector: FALSE

size: 36

startOffset: 16

+20

bankId: 1

pointsToVector: FALSE

size: 56

startOffset: 76

Bank 1

+16

PayloadF

+52 +76

bankId: 1

pointsToVector: FALSE

size: 88

startOffset: 528

bankId: 1

pointsToVector: FALSE

size: 400

startOffset: 576

Bank 2

+600

bankId: 1

pointsToVector: FALSE

size: 16

startOffset: 148

bankId: 3

pointsToVector: FALSE

size: 360

startOffset: 308

PayloadA

+132 +576

PayloadC

+976+148

PayloadD

+164 +528

PayloadB

+616

Bank 3

+360

PayloadE

+668

First level vector

To complete the definition of paged event we must define the
vectorPayloadDescriptorStructure. This structure defines all components
of paged events following the base event header. Its format described in Table 3.8.

 3.8 Payload descriptor structureTable

Name Type Content

eventNumEquipments eventNumEquipmentsType Number of equipments contributing to
the payload

eventExtensionVector Single entry
eventVectorStruct

Pointer to the header extension
ALICE DAQ and ECS manual

Data pools 41
Including the above definitions, a complete paged event looks as follows:

 3.9 Example of complete paged eventFigure

eventHeader

Base event header

Extended header (optional)

Equipment payload or 2nd level vector

Equipment payload or 2nd level vector

vectorPayloadDescriptorStruct

Payload descriptor

equipmentHeaderStruct

Equipment header

Single entry equipmentVectorStruct

Equipment vector

equipmentHeaderStruct

Equipment header

Single entry equipmentVectorStruct

Equipment vector

3.12 Data pools

A data pool is a contiguous block of memory reserved to a particular function, e.g.
the data pages available to the readout process. Each pool must be used
exclusively for one function. If paged events mode is adopted, separate pools must
be allocated for first level vectors, for second level vectors and for data pages.
DATE systems can (and usually do) have multiple data pools.
ALICE DAQ and ECS manual

42 Data format
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
4
Configuration
databases

All actors belonging to a DATE system need access to configuration parameters.
The DATE databases package, described in this chapter, provides the relevant
interfaces to the static DATE configuration information.

4.1 Overview . 44

4.2 Information schema . 44

4.3 The static databases . 45

4.4 Other centrally stored parameters 52

4.5 The database editor . 56

4.6 Example of a DAQ system . 63

4.7 The programming interface . 68

44 Configuration databases
�

4.1 Overview

Every DATE system can be fully defined by several pieces of information,
consisting of a static part (described in a MySQL database and editable with
editDb, see Section 4.5) and a dynamic part (for run-specific configuration
parameters, accessible via the runControl Human Interface, see Section 14.5).
Static information is mostly hardware related and valid across many consecutive
runs: it includes definitions for available hosts (LDCs, GDCs, EDMs, etc.), readout
links, detectors and triggers setup, and DATE components parameters. Based on
these static definitions, the operator can then choose a specific dynamic
configuration (set of hosts and their run-time parameters) for a given run.

The DATE database package (dateDb) provides an access layer to the static
configuration, whereas the dynamic part is handled internally by the relevant
DATE packages.

4.2 Information schema

The DATE static configuration is stored in a MySQL database. A graphical editor is
provided to enter data.

To create the required database structure in MySQL, in a database named
DATE_CONFIG by default, you need to define the database access parameters (see
Section 2.1 and Section 4.4.4), execute the DATE setup procedure, and then type:

> ${DATE_DB_BIN}/createtables

This utility creates the tables structure. The existing configuration stored in MySQL
is destroyed. It is recommended to rather use the newDateSite.sh which creates
a working DATE_SITE directory and the corresponding DATE_CONFIG database
from scratch, populating it with a minimal running set of local roles. It is then easy
to augment the configuration with more roles.

For convenience, the configuration database can be backed up using the command
${DATE_DB_DIR}/dbBackup.sh. It creates a SQL dump of the full content,
which is handy in case one needs to recover from a hardware failure or a wrong
operation on the data. It can easily be reloaded in an empty database using the
source filename.sql syntax from the mysql client command line.

Figure 4.1 describes the current database structure and the relations between the
main tables. Details about the semantics of each table are given in the following
sections.
ALICE DAQ and ECS manual

The static databases 45
 4.1 DATE configuration database structure - main tables.Figure

4.3 The static databases

The DATE static configuration items are grouped in different families, historically
named ‘databases’. Information was originally stored in flat ASCII files, and it was
moved to a MySQL database storage starting from DATE V5. To follow the
historical design conventions (and the vocabulary still in use in the older part of the
DATE source code), what we describe below as ‘databases’ are the original
categories of static parameters used to describe a DATE setup, despite the fact that
all of them are now stored in the same and unique DATE_CONFIG database hosted
on a MySQL server, mapping the information in the same way it was before in flat
files. Newer categories of configurable items are described in Section 4.4.
ALICE DAQ and ECS manual

46 Configuration databases
�

The static databases include:

• the roles database: it contains the definitions of all the logical entities part of a
given DATE_SITE: LDCs, GDCs, EDM hosts, detectors and trigger masks;

• the triggers database: it defines the detectors involved in each trigger mask;

• the detectors database: it defines the composition of each detector and/or
sub-detector in terms of sub-detectors and/or LDCs;

• the event building control database: it defines the event-building
strategies to be applied by the eventBuilder process;

• the banks database: it defines the memory banks to be provided on the hosts
defined in the roles database.

The information stored in each database is, in principle, static, i.e. it evolves slowly
according to hardware or experimental conditions changes.

The static databases always describe a superset of the actual run-time
configuration. An entity must be defined in the appropriate database to be able to
participate in a run. The actual list of run-time actors is selected from these
databases.

The current content of the static databases can be retrieved using the command
${DATE_DB_BIN}/dumpDbs. The output of this utility looks as shown in
Section 4.6. This tool also verifies the consistency of the database information (in
particular, the references between tables) and may be useful for debugging
purposes.

4.3.1 Terminology and assumptions

The following terms are used throughout this document:

• Role: role of the entity (LDC, GDC, EDM, etc.).

• Name: unique name of the entity defined by the given record. This name must
be unique across all roles of the database. It is not case sensitive.

• ID: identifier associated to the entity. Defined in the roles database, it can be
associated to the corresponding bit of a bit mask or of a bit pattern. Each
ID is unique within its role. Entities of different roles may share the same
ID. An ID can assume any value between its associated min ID (included)
and its associated max ID (included). Not all the values in this range need to
correspond to an entity: it is possible to have IDs with no associated entity.

• Bit mask: a set of bits with one and only one bit set: this bit corresponds to a
given ID and it can be tested using the DB_TEST_BIT macro. A bit mask can
be described by the same type and size of storage as the corresponding
bit pattern.

• Bit pattern: a set of bits with any number of bits (including none) set. Each
bit of a bit pattern correspond to a given ID and can be tested using the
DB_TEST_BIT macro. A bit pattern can be considered like the
combination of zero or more bit masks (of equal semantic) and it is
described by the same type and size of storage as the equivalent bit mask.

• Min ID and Max ID: minimum and maximum value assumed by IDs
associated to a given role. For any given role, an entity exists with ID equal to
ALICE DAQ and ECS manual

The static databases 47
min ID and max ID and no entities exist with ID smaller than min ID or
greater than max ID. The max ID definition is dynamic and is - in principle -
unlimited. However, three implicit limitations are given by:

1. the architecture where the code is executed (see the constant INT_MAX
defined in limits.h);

2. the corresponding (if any) entity part of the event header
(eventTriggerPattern, eventDetectorPattern, eventLdcId,
eventGdcId);

3. for all hosts, the HOST_ID_MIN and HOST_ID_MAX definitions given in
${DATE_COMMON_DEFS}/event.h (currently equal to 0 and 511).

• maskElementType: the basic type used to describe a bit mask or a
bit pattern.

The DATE event header imposes the following rules on the IDs ranges:

• trigger patterns must correspond to ID values in the
[EVENT_TRIGGER_ID_MIN..EVENT_TRIGGER_ID_MAX] range;

• detector patterns must correspond to ID values in the
[EVENT_DETECTOR_ID_MIN..EVENT_DETECTOR_ID_MAX] range;

• LDC IDs and GDC IDs must be in the [HOST_ID_MIN..HOST_ID_MAX]
range.

The corresponding constants are defined in ${DATE_COMMON_DEFS}/event.h

Each DATE site may define its IDs within the limits imposed by the DATE event
header and in respect of the rules described above. IDs are usually assigned
automatically by editDb.

4.3.2 The roles database

The roles database is used to define all entities part of a DATE system. The
definition is given using a unique role-ID scheme, where role can be one of
LDC, GDC, EDM, TRIGGER_MASK, TRIGGER_HOST, DETECTOR,
SUBDETECTOR, DDG, FILTER, MON and ID is a positive integer
(corresponding to a bit in all the relative masks and patterns). Once the
definition is complete, each component can be uniquely identified either by its
role plus ID or by the presence of the associated bit in a related mask or pattern.

The DDG,FILTER and MON roles are used by runControl to start some extra
processes at run-time. See Chapter 14 for more information on these roles.

All the records of this database include a symbolic name, the associated ID and a
textual description. Other optional or role-specific parameters are available.

All the other DATE databases use the definitions given in the roles database to
reference DATE components by name rather than by absolute value. Therefore, to
fully decode a record belonging to another database, a scan of the roles database
is implicitly required. This is also needed to size the variable-size entities, such as
bit masks and bit patterns.

Entities that should be directly selectable from the runControl Human
Interface can be given a topLevel attribute. When this attribute is set to “Y”
ALICE DAQ and ECS manual

48 Configuration databases
�

the entity is under direct control of the DAQ operator. On the other hand, when the
attribute is set to “N” (or not given at all) the operator has no direct control and can
only indirectly act on the given entity. Let’s take an example of a DAQ system made
of two detectors D1 and D2 and six LDCs L1 to L6. D1 is made of L1, L2, and L3, D2
is made of L4 and L5; L6 doesn’t belong to any detector. A possible definition of this
DAQ system gives to D1, D2 and L6 the attribute topLevel to “Y” and to the L1,
L2, L3, L4, and L5 the value “N”.

Entities that correspond to physical hosts (e.g. LDCs, GDCs, EDMs and
TRIGGER_HOSTs) may be given an optional TCP/IP hostname. This will associate
the TCP/IP host to the appropriate DATE entity. We can therefore implement
“virtual hosts” (e.g. detectorOneLdcOne) and associate them to the actual
machine via the database. We can also have machines with multiple roles, e.g. GDC
and EDM : same TCP/IP hostname and different role names. One can even have
several LDC roles on the same machine if resources and readout equipment allows
(e.g. Rand equipment for test setups).

LDCs may be assigned a HLT role, see Section 17.2 for details.

4.3.3 The trigger database

The trigger database is used to define the detectors active for each possible
trigger mask. For each trigger mask, the list of detectors to be read out is
given. This should be repeated for all the trigger masks defined in the roles
database.

Each event should have at least one trigger mask active. The information contained
in this database, combined with the runControl dynamic information, gives an
exact description of all the possible triggering scenarios. This corresponds to an
exact list of all the detectors that transfer data over their DDL(s) for each level-2
accepted trigger.

When running with a real LTU, it is recommended to define a trigger role for all
possible class bits (usually 50), and associate each mask with all detectors. One can
use the command ${DATE_DB_DIR}/daqDB_createAllTriggerClassMasks
for this purpose. Note that the role ID of a DATE trigger mask corresponds to the
class number in the trigger class mask sent by the LTU.

4.3.4 The detectors database

The detectors database defines - on a detector by detector basis - the
connections between the front-end equipment and the LDCs.

The list of LDCs or sub-detectors belonging to a each detector and sub-detector is
stored there.

A host can be statically defined as part of a detector even if it is physically
disconnected from it. This is the case - for example - of progressive installations or
run-time disconnections/replacements. The information contained in this database,
combined with the runControl dynamic information, shall return the exact set of
LDCs connected to each detector during any given run.
ALICE DAQ and ECS manual

The static databases 49
The tree-like structure needs to be browsed recursively to know the top detector of
a given role (if any). One can use the command
${DATE_DB_DIR}/getTopDetector.tcl to retrieve it.

4.3.5 The event-building control database

For each event, the trigger system activates all the front-end equipments involved.
This may or may not correspond to all the detectors/sub-detectors which are part
of the DAQ system. The data coming from the “active” detectors is then collected
by the LDCs who ship their events to one of the available GDCs. Here the event
builder receives the sub-event(s) and acts on them following the directives given
in the event building control database. At this moment the DATE event
builder can follow three different policies:

a. build: all the LDCs in the runControl dynamic database must contribute to
a given event.

b. no-build: LDCs can create sub-events independently from the rest of the
DAQ system and these sub-events will be recorded individually.

c. partial build/no-build: a well-defined set of LDCs will contribute to a
given event that will be recorded either as a unique event or sub-event by
sub-event.

The first case requires a sub-event from all LDCs participating in the run before
building the event and delivering it to the recording channel. Typical use of this
policy could be start-of-run or physics records. Please note that whenever the
information stored in the event header, namely the trigger pattern and the detector
pattern, is valid, the event builder will use it to establish the list of contributors
to the event. A “build” may become a “partial build” whenever the detector pattern
contains a subset of the LDCs which are active in the system.

The second case is very simple: LDCs may or may not create sub-events and these
are recorded whenever the recording channel is ready. This policy could usually be
applied to start-of-run-files and end-of-run-files.

The last case is the more complex and needs great care. Partial event building can
be driven in three ways: by source, by detector set and by trigger mask. By source
means that the list of expected sub-events for a given event can be derived by the
source of the sub-event itself. For example, a calibration event coming from a given
detector most likely covers only that detector. In the case of ALICE, all events have
an associated detector mask and trigger mask specifying (indirectly) the LDCs who
are expected to provide sub-events for the given event. Therefore it is possible to
declare policies solely on a “detector set by detector set” or “trigger by trigger”
basis. In all cases (by source and by trigger mask) the associated policy can instructs
either to build or not to build the given event, according to the requirement dictated
by the DAQ system.

All the rules are driven by an associated event type. It is possible to have different
rules for the same event type, i.e. calibration events coming from one detector must
be built while calibration events coming from another detector shall not be built.

Each record in this database should specify the event type (SOR, EOR, etc.), the
optional list of trigger masks, detectors or sub-detectors and the action (BUILD or
NOBUILD). As many rules as needed can be given. If multiple rules can be activated
ALICE DAQ and ECS manual

50 Configuration databases
�

by the same event, the first one in order of the associated PRIORITY value is used.
A rule accepts only specifiers of the same type, i.e. only trigger masks or only
detectors.

4.3.6 The banks database

The banks database is used to define the memory banks required by each DATE
host/entity, their sizes and the support mechanism(s) with their details.

Each record of the banks database contains a description of the banks to be
implemented and their characteristics: type, name, size and content. The same host
can implement multiple banks: one set per role and several subsets for each set. A
proper definition of the memory banks should define an optimal and safe usage of
the memory resources for each node of a DATE system.

The available supports are:

• IPC: the key is the full path of a file to be used to map to the memory segment.
This file is used to create a system-wide unique key used to identify the
memory segment (see “man ftok” for more details). It is not necessary to
specify it: when this field is empty, a unique name is assigned. The file is then
created automatically at run-time in the ${DATE_SITE_CONFIG} directory,
with access permissions allowing read operation from everybody and write
operation from DATE_USER_ID. It is not recommended to manually specify a
key file: great care must be taken so that the key is unique for each IPC bank, in
case they are used on the same machine.

• PHYSMEM: the key is the device used by the physmem driver.

• BIGPHYS: the key is the device used by the bigphys driver.

• HEAP: the process heap will be used (no multi-process sharing is possible). The
key is dummy and not used.

The size gives the amount of memory to be allocated in bytes. It may also be given
in kilobytes or megabytes (e.g. 10K, 1M).

If the block has to be used exclusively for the DATE control block, the size can be
specified as “-1”: this creates a block of the exact size needed to store the DATE
control block.

The elements that can be allocated are:

• control: the DATE control block (needed on all hosts part of the DAQ
system).

• readout: all the resources needed by readout.

• readoutReadyFifo: the FIFO used to transfer events out of the readout
process.

• readoutFirstLevelVectors: pool of first level vectors used to describe
paged events.

• readoutSecondLevelVectors: pool of second level vectors used to
describe the data pages of paged events.

• readoutDataPages: the pool for the payload of all types of events.
ALICE DAQ and ECS manual

The static databases 51
• edmReadyFifo: the FIFO used to transfer events out of the edmAgent.

• hltAgent: all the resources needed by the hltAgent.

• hltReadyFifo: the FIFO used to transfer events out of the hltAgent.

• hltSecondLevelVectors: the pool of second level vectors available to
the hltAgent.

• hltDataPages: the pool for payloads created by the hltAgent.

• eventBuilder: all the resources needed by the eventBuilder.

• eventBuilderReadyFifo: the FIFO used to store events out of the
eventBuilder.

• eventBuilderDataPages: the pool used by the eventBuilder to store
the events received from the LDCs.

The readout, hltAgent and eventBuilder processes allocate all the resources
they need (e.g. readout allocates readoutReadyFifo,
readoutFirstLevelVectors, readoutSecondLevelVectors,
readoutDataPages and edmReadyFifo). If needed, the specific resources can be
tuned using the appropriate keyword, e.g.:

ROLE_NAME=myldc,SUPPORT==physmem1,KEY_PATH=/dev/physmem1,SIZE
=100M,PATTERN=readoutDataPages

ROLE_NAME=myldc,SUPPORT=ipc,KEY_PATH=,PATTERN=readout,SIZE=1M

This allocates 100 MB using PHYSMEM (device /dev/physmem1) to store the
readout data pages and 1MByte using IPC for all other resources needed by the
LDC role named myldc.

If the same memory block has to be used for multiple purposes (e.g. ready FIFO
and first level vectors), the block is split evenly between the two resources. If the
same block has to be used also for data pages (readoutDataPages,
hltDataPages, eventBuilderDataPages) an heuristic algorithm is used to
distribute the memory for the non-data and data blocks. Data blocks are given
much more space than non-data blocks. As this algorithm may not result in an
appropriate partitioning, we suggest to separate data from non-data blocks and to
explicitly size the two banks separately.

If the same DATE host is used - under different role names - for different roles (e.g.
LDC and EDM), different keys must be used, one for each role. Failure to do so may
produce unpredictable results. This is done automatically for the IPC type if no key
is provided.

When the database defines resources that are not active at run-time (e.g. EDM
when the EDM checkbutton in the runControl window is not selected), these are
not allocated. However, when certain resources are first required and then not
needed, DATE will not remove them. For example, if a DATE run at one given
moment includes the EDM and a memory bank is allocated for the edmAgent
ready FIFO, the block will remain available (unused), even if the EDM is
subsequently disabled. If the removal of the block is needed, this must be done via
external methods (Operating System reboot or specific procedures).

The run-time configuration of the banks allocated by DATE can be dumped using
the utility:
ALICE DAQ and ECS manual

52 Configuration databases
�

${DATE_BANKS_MANAGER_BIN}/dumpBanks

This tool can only run on hosts where DATE is currently running (or has run) and
dumps the status of the various banks, their size and their addresses. The output of
this utility reflects the run-time allocation of blocks and fifos according to the
combination of static and dynamic information. The output from the utility is
shown in Listing 4.1.

.
 4.1 Example DATE banks dumpListing

1: > ${DATE_BANKS_MANAGER_BIN}/dumpBanks ldc
2: rcShm: @0x40195000 offset:0 size:11088 bank:0
3: readoutReady: @0x40197b50 offset:11088 size:1037488 bank:0
4: readoutFirstLevel: @0x40295000 offset:0 size:1048576 bank:1
5: readoutSecondLevel: @0x40395000 offset:0 size:1048576 bank:2
6: readoutData: @0x40495000 offset:0 size:262144000 bank:3
7: edmReady: NOT AVAILABLE
8: hltReady: NOT AVAILABLE
9: hltSecondLevel: NOT AVAILABLE
10: hltData: NOT AVAILABLE
11: eventBuilderReady: NOT AVAILABLE
12: eventBuilderData: NOT AVAILABLE
13: physmem: @0x10060000 bank:3
14: FIFOs: readoutReadyFifo == recorderInputFifo
15: edmAgent: disabled (0) hltAgent: disabled (0)

This example describes an LDC where the DDL is active. The first bank (bank
number 0) is used for the DATE control block (line 2) and the readout ready FIFO
(line 3). One bank is allocated for the first level vectors (line 4) and another bank for
the second level vectors (line 5). Finally the PHYSMEM - declared as bank 3 (line
13) - is used to store the readout data pages (line 6). EDM, HLT and event builder
are not active on this node (lines 7-12 and 15). Finally there is one FIFO connecting
the output of readout to the input of recorder (line 14).

4.4 Other centrally stored parameters

In addition to the above ‘static databases’ describing the architecture and relations
between the run-time entitites, the numerous DATE distributed processes also need
some common parameters centrally defined and accessible to all of them

Items that can be modified by users are grouped in two families of DATE
information: the Environment parameters and the Files. The details about the
package-specific configuration items is not described here but in the corresponding
packages chapters. A third category, Detector Files, is devoted to store files
handled by the detector software (electronics initialization scripts, calibration
procedures), but not used by DATE packages.

There are also a few tables meant to store internal DATE persistent parameters, not
supposed to be modified directly. This is the case of the GLOBALS, SOCKETS, and
DETECTOR_CODES tables.

Finally, the information related to readout equipments is saved in a set of tables
specific to each kind of equipments: DDLin, DDLout, EQUIP_PARAM_...(one
ALICE DAQ and ECS manual

Other centrally stored parameters 53
table per type of equipment), EQUIP_TYPES, EQUIP_TYPES_FORMAT. This
information is accessible with editDb.

The runControl also uses a dedicated table to store its run parameters: this is the
runControl_runParameters table, editable through the runControl Human
Interface.

4.4.1 DATE globals

This table stores only a few hidden (i.e. not supposed to be modified) values:

• DB version : tags the database structure version. It is used to check that the
installed version of DATE can run with this database. A mismatch will prevent
DATE to run. Either the database should be updated (check the release notes,
this is done with ${DATE_DB_DIR}/upgrade.tcl), or the correct version of
DATE should be installed.

• LHC period : used by mStreamRecorder to store and register the files in the
correct location to be retrieved by offline analysis. One can get the current value
with ${DATE_DB_BIN}/getLHCperiod.sh

• Run Number : the latest run number used, incremented at each start of run.

There is no API to write to this table. Modifications are done directly with MySQL
commands.

4.4.2 DATE sockets

TCP/IP sockets and ports are used to communicate between the DATE processes.
To allow having several roles on the same machine, the port number used for each
type of service are not fixed but dynamically assigned at the time of the definition
of the ROLES table. This table is modified automatically by editDb when new
roles are added or removed. It calls
${DATE_DB_BIN}/daqDB_fillSocketTable, which assigns a port number for
each service provided by a given DATE role on each machine. The port numbers
are allocated within a fixed range of port numbers (DATE_PORT_MIN and
DATE_PORT_MAX defined in daqDB_fillSocketTable.c, typically between
6001 and 6100). There is in principle no need to access (read or write) this
information. The DATE services retrieve the information at run-time using the
dbGetPort()function defined in ${DATE_DB_DIR}/dateDbFile.h or directly
from the shell utility ${DATE_DB_BIN}/daqDB_getPort.

4.4.3 DATE detector codes

Depending on the context, a detector can be identified by a number (e.g. in a bit
mask, or for for a DATE role ID), by a name (for human interfaces, or for a DATE
role name) or by a 3 letter code. The table to convert between one form and the
other is fixed, and defined in ${DATE_DB_DIR}/detCodes.h

This header file also provides means to retrieve quickly the information from a
in-memory table. However, for convenience in SQL queries, the same information
is also stored in the database DETECTOR_CODES table.
ALICE DAQ and ECS manual

54 Configuration databases
�

Consistency between the two is ensured with the utility
${DATE_DB_BIN}/daqDB_fillDetectorCodes producing the corresponding
statements to populate the DB at creation time, and
${DATE_DB_BIN}/daqDB_fillDetectorRoles, which outputs the statements
needed to create the corresponding DATE roles.

The output of both utilities in included in the DB creation script, which should be
updated accordingly whenever the hardcoded list is modified.

It is very important that the detector code matches the role id in the roles
database (this is ensured by the initial DB populating script). When adding a
detector manually, editDb tries using the detector ID as role ID, if not already used
elsewhere.

4.4.4 DATE Environment

The Environment table stores system environment variables that may be loaded
at run-time. Each record consists of a name (the name of the environment variable),
a value, a class telling in which context it is used (one of General Database
Infologger User), and a flag LOAD_BY_DEFAULT specifying if it should be
loaded by the global DATE setup procedure. Default entries are populated when
the configuration database is created. Further entries can be added manually, under
the User class only.

Example variables include access parameters to the databases (configuration,
logging, logbook, AMORE), the DIM DNS node, the path to the File Exchange
Server, etc.

For performance reasons, care should be taken not to extend the run-time
environment with unnecessary variables loaded by default and used only by a few
processes. Other methods exist to store configuration information related to a
limited number of processes (see next section).

All variables needed in the DATE environment should be defined here. The only
exception being the initial access parameters to the database which need to be put
in the file ${DATE_SITE_PARAMS}. These parameters are needed by the DATE
setup script to load all other environment variables (and are overwritten in this
process by the ones defined in the database). It is the only information that needs to
be distributed manually on all the DATE hosts, everything else being then available
from the central database.

${DATE_SITE_PARAMS} should contain the definition (on each line, one variable
name and its value separated by a space) of DATE_DB_MYSQL_USER,
DATE_DB_MYSQL_PWD, DATE_DB_MYSQL_HOST, DATE_DB_MYSQL_DB. It is
populated automatically by the script creating a new DATE site.

The variables with the LOAD_BY_DEFAULT flag set are loaded in the environment
by the DATE setup, using the loadEnvDB.tcl tool. This script prints the
commands necessary to load the corresponding variables in the environment for
bash and csh, and allows to filter them by class. Use
${DATE_DB_DIR}/loadEnvDB.tcl -h for details on the available options.
ALICE DAQ and ECS manual

Other centrally stored parameters 55
4.4.5 DATE Files

The Files table stores any kind of binary content. It can be seen as a shared
filesystem, available from all DATE components.

Each entry is made of a PATH to identify the file (usually with a directory-like
structure to sort the information), an optionnal HOST (in case of a file specific to a
given host or role; this can be empty if it is of general use), a VALUE (it can be
binary, but is usually textual for configuration files), a DESCRIPTION of the
content, and a CLASS (General for default resources, or User for the ones added
later). The unique key to access the data is the couple PATH - HOST.

There are two ways to access (read or write) the content of a file from a DATE
process. The first involves direct access to the MySQL table and issues SQL queries
loading the file in memory. The second is done with the shell utility
${DATE_DB_DIR}/copyFileDB that allows to copy a file from the database to
the local disk. Its content can then be read by classical means. Files with a relative
path (not starting with ‘/’) are loaded to/from ${DATE_SITE} (or
${DATE_SITE}/${DATE_HOSTNAME} for host specific files). The script either
takes a local file and stores it in the database, or copies to the local disk a file from
the database. The -help command line option gives an exhaustive list of possible
options. This tool is mostly used to retrieve files from the database, whereas
editDb (Section 4.5) provides a user friendly way to store and edit files in the
database.

In the case of a file storing key/value pairs, the API provided by the header
${DATE_DB_DIR}/dateDbFile.h offers and easy way to load the file and
access the values. A command line tool, ${DATE_DB_BIN}/dumpDbFile, is based
on this interface and gives a listing of the parsed file contents.

4.4.6 DATE Detector Files

A table named DETECTOR_CFG_FILES stores all the files for each detector defined
in the detector codes table. A view DETECTOR_CFG_XXX is also created to
selectively access the files of a given detector, XXX being the detector code.

This table structure is optional and not needed to run DATE. To create and remove
it, the following utilities may be used: ${DATE_DB_DIR}/daqDetDB_create and
${DATE_DB_DIR}/daqDetDB_destroy. A set of shell-like tools are provided to
list/get/store/remove the files available: ${DATE_DB_DIR}/daqDetDB_ls,
${DATE_DB_DIR}/daqDetDB_get, ${DATE_DB_DIR}/daqDetDB_store,
${DATE_DB_DIR}/daqDetDB_remove. A graphical interface,
${DATE_DB_DIR}/daqDetDB_browser, is also provided to edit the files.

To use some of the commands above, the environment variable
$DATE_DETECTOR_CODE must be defined in order to access the files of the given
detector.

4.4.7 DATE readout equipment tables

The readout equipment configuration defines the readout system on the LDCs.
This item is not in the dateDb package, but is part of the static configuration stored
ALICE DAQ and ECS manual

56 Configuration databases
�

in the database tables. The details about the various parameters are described in the
relevant hardware chapters.

The DDLin table holds the mapping between DDL ids (e.g. used offline) and their
space-optimized numbering used for the HLT to DAQ protocol (single bit mask
reporting all the links).The static mapping used for the decoding of HLT decisions
is defined in ${DATE_DB_DIR}/dbHLTmask.c and the corresponding SQL
statements to populate the database created by ${DATE_DB_BIN}/dbHLTmask.
These statements are again included in the DB creation script every time the static
definition changes (e.g. new detector or links). It usually goes together with an
update in the HLTagent protocol.

In order to verify the consistency of the readout links and the correct cabling, the
DDLin table has a field to register the remote SIU IDs. This is not used at run-time
by DATE, but provides a convenient way to track changes in the cabling or
hardware configuration, if needed. The command
${DATE_DB_DIR}/checkSIUs.tcl allows to take a snapshot of the current
hardware setup, and then check for changes. This is especially useful to notice
cabling errors after detectors shutdown periods. Note that for this procedure all the
SIUs should be up and running, and the DDL not used by other processes (in
particular, it would not work during a run or an electronics configuration via DDL
in progress).

To communicate with the electronics through the DDL, it is needed to know what
RORC should be used on the client to access a given detector equipment ID. This
information can be read from the database with shell commands
${DATE_DB_DIR}/daqDB_getRorcFromEqId,
${DATE_DB_DIR}/daqDB_getRorcsFromLDC and
${DATE_DB_DIR}/getDdlLinks.sh.The necessary details to open the link (e.g.
RORC serial number and channel) are returned by these tools, with different
flavours of queries and filters.

4.5 The database editor

The configuration can be edited with the graphical user interface named editDb. It
is a Tcl/Tk application using SQL transactions to display and update the DATE
database content (actually, only the subset accessible to users and directly related to
the DATE static information). This tool relies on the tables definition and semantics
of the database structure at the time it was developped, in order to provide
high-level consistency checks and simple editing.

This chapter describes the features of the human interface. For a description of the
configuration parameters, please consult Section 4.3.

To launch editDb, type:

> editDb

All the menus have a Commit and a Rollback button. The configuration database
is actually changed only after you click on the Commit button. You can edit the
parameters, and then undo all the modifications made since last Commit with the
Rollback button.
ALICE DAQ and ECS manual

The database editor 57
The editDb interface starts with the roles configuration display, as shown in
Figure Figure 4.2. Use the buttons at the top of it to select a configuration item. The
current one is highlighted in red. All the configuration displays share the function
buttons at the bottom of the display, however, some configuration displays have
extra controls.

To exit editDb, click on the Quit button. You may quit only if all the changes to
the database have been applied or canceled.

 4.2 The initial editDb view.Figure

To create a new role, click on the New button. This allows you to enter the details in
the entry fields on the right hand side of the display. Once you are finished entering
the details for the new role, click on the Add button. This will cause the new role to
be added to the database. It will appear in the roles list on the left of the display.
Now you are able to click on the Commit or Rollback button, to apply or to undo
the changes in the database. To delete a role, first select it in the roles list on the left
of the display, then click on the Delete button, finally click on the Commit button
to accept the changes.

You can clone LDC and GDC roles. From the roles configuration display, first select
the GDC or LDC you want to clone, then click on the Clone Role button. A
window will pop up with some options. For cloning a GDC role you need to enter a
space separated list of hostnames, as shown in Figure 4.3.

 4.3 GDC cloning window.Figure

For cloning an LDC role you need to enter the hostnames, choose whether to clone
the LDC’s equipment and choose a detector if you want to add the cloned LDCs to
it, as shown in Figure 4.4. For both LDC and GDC roles you can change the naming
schema: occurences of $host in the character string are replaced by the hostname.
ALICE DAQ and ECS manual

58 Configuration databases
�

 4.4 LDC cloning window.Figure

After creating a new LDC role you can add an equipment to it, either by selecting it
in the roles list and clicking on the extra button View Equipment or by clicking on
the Equipment configuration display button and then selecting the LDC in the list
on the left of the display. Clicking on the Add button lets you first choose what type
of equipment to create by selecting it in the drop down box as shown in Figure 4.5.
After selecting an equipment type click on the Create button. Now you are able to
enter the equipment details. Once finished you need to click on the Add button to
add the equipment to the database. Click on the Commit or Rollback button to
accept or to undo the addition.

 4.5 New equipment creation display.Figure

Once you have added some equipments to a LDC, you will be able to see their
details when you select them in the equipment list as shown in Figure 4.6. You can
now edit any of the equipment fields. If you edit a field you will have to click on the
Commit or Rollback button before you can change to a different configuration
display. Inactive equipments appear in red in the equipment listbox.
ALICE DAQ and ECS manual

The database editor 59
 4.6 Equipment configuration display.Figure

Once you have a Detector or Sub-detector role you can add components to it. Either
select the detector in the roles configuration display and press on the View
Components button, or click on the detectors configuration display button, then
select the detector in the detector list. You should see a list of components
belonging to the detector in the Made Of list, and a list of available components in
the Available Components list, as shown in Figure 4.7.

 4.7 Detectors configuration display.Figure

Now you are able to add components by selecting them in the Available
Components list and then clicking on the Add button. You can remove components
by selecting them in the Made Of list and clicking on the Remove button. If you
make any change, then you need to click on the Commit or Rollback button.

Once you have a TriggerMask or TriggerHost role you can add components to it.
Either select the trigger in the roles configuration display and press on View
Components, or click on the triggers configuration display button, then select the
detector in the trigger list. You should see a list of components belonging to the
trigger in the Made Of list, and a list of available components in the Available
Detectors list, as shown in Figure 4.8.
ALICE DAQ and ECS manual

60 Configuration databases
�

 4.8 Triggers configuration display.Figure

Now you are able to add components by selecting them in the Available
Detectors list and clicking on the Add button. You can also remove components
by selecting them in the Made Of list and clicking on the Remove button. If you
make any changes, then you need to click on the Commit or Rollback button.

Clicking on the Membanks configuration display button shows the memory banks
that are defined in the Membanks list, as shown in Figure 4.9. The details for the
currently selected memory bank are displayed on the right. To add a new membank
click on the New button. This clears the entry fields under the Membank Details
label. Enter the details of the new memory bank, and then click on the Add button.
You can cancel the addition of a new memory bank by clicking on the Cancel
button. You can also edit the details of the currently selected memory bank. You
need to click on the Commit or Rollback button when you have finished the
changes.

 4.9 Membanks configuration display.Figure

Clicking on the Event Building configuration display button shows the event
building rules that are defined in the Rules list, as shown in Figure 4.10. The
details for the currently selected rule are displayed on the right. To add a new rule
click on the New button. This clears the entry fields under the Rule Details label.
Enter the details of the new rule, and then click on the Add button. You can cancel
ALICE DAQ and ECS manual

The database editor 61
the addition of a new rule by clicking on the Cancel button. You can also edit the
details of the currently selected rule. Click on the Commit or Rollback button
when you have finished the changes.

 4.10 Event building rules configuration display.Figure

Clicking on the Environment configuration display button shows you a
dropdown list where you can choose the class of variables you want to see. In the
list below you will see the variables defined for the current class. On the right of the
display you see the details for the currently selected variable from the listbox. For
all the classes except the User class you can only change the value field, as shown
in Figure 4.11.

 4.11 Environment variables configuration display.Figure

If you select User from the dropdown list you are able to add and delete user
defined variables. You can also edit the value and description fields for each
variable, as shown in Figure 4.12.

If the LOAD_BY_DEFAULT flag is set, the environment variable is loaded into the
environment when calling the DATE setup procedure.
ALICE DAQ and ECS manual

62 Configuration databases
�

 4.12 Environment variables configuration display showing user defined variables.Figure

The DATE MySQL configuration system allows to store files (ASCII or binary). This
is convenient to avoid deploying a shared file system to distribute files on DATE
hosts. Clicking on the Files configuration display button shows a list of file paths
with the host they will be placed on, or a path alone which means the file will be
placed on all DATE hosts. On the right of the display are the details for the
currently selected item in the listbox, as shown in Figure 4.13. To create a new file
entry click on the New button and fill in the entry fields, clicking on the Get file
button brings up a file selection display which lets you select the file you want to
upload. Leaving the Host entry field blank is interpreted to mean all hosts. Click
on the Add button to add the details and the file to the database. Click on the
Commit or Rollback button when you have finished the changes.

Figure 4.13 Files configuration display.

To edit a file click on the entry in the Files list then click on the Edit file button.
Tthis will launch an editor where you may make changes to the file. Once you have
made the changes, click save then exit the editor. Clicking on the Commit button
will apply the changes to the database.

SOR/EOR commands/files are automatically copied on to the target host when
readout or the eventBuilder starts.
ALICE DAQ and ECS manual

Example of a DAQ system 63
Other files can be copied locally with the copyFileDB.tcl script (see
Section 4.4.5 for details).

4.6 Example of a DAQ system

We will now see how to define an example DAQ system, as described in
Figure 4.14.

 4.14 Example of a DAQ system.Figure

triggerHost1DetOneSubOneDetOneSubTwo

DetOneSubThree

DetOneLdc1 DetOneLdc2 DetOneLdc3 DetTwoLdc1 DetTwoLdc2 DetThreeLdc AloneLdc

gdc1 gdc2

This DAQ system is made of three detectors, attached to six LDCs. One extra LDC
has been allocated for non-detector related tasks (e.g. Trigger System). The three
detectors are called DetOne, DetTwo and DetThree. The first of the three
detectors (DetOne) has been partitioned into three sub-detectors: DetOneSubOne,
DetOneSubTwo and DetOneSubThree. The experiment allows two triggers: one
that activates all the three detectors and a second trigger that activates DetOne
alone. Similarly, for calibration events we want DetOne to receive a stand-alone
calibration and a second calibration to go to all the detectors. The event builders
must build all PHYSICS and CALIBRATION events.

This example is described in ASCII files format in order to give an idea of what
parameters should be stored in the database with editDb. The files can not be used
directly, but give a realistic dump of the parameters to be defined in the database to
ALICE DAQ and ECS manual

64 Configuration databases
�

implement such a DAQ system. These example files are available in the directory
${DATE_DB_DIR}/testConfig, and are shown in Listing 4.2.

 4.2 Example of configuration filesListing

1: > cd ${DATE_DB_DIR}
2: > ls -1 testConfig
3: dateBanks.config
4: dateRoles.config
5: detectors.config
6: eventBuildingControl.config
7: triggers.config

The first database we examine is the roles database, stored in
${DATE_DB_DIR}/testConfig/dateRoles.config.

 4.3 Example of roles databaseListing

1: > cat ${DATE_DB_DIR}/testConfig/dateRoles.config
2: >LDC
3: DetOneLdc1 1 "DetOne LDC #1" hostname=host1
4: DetOneLdc2 2 "DetOne LDC #2" hostname=host2
5: DetOneLdc3 3 "DetOne LDC #3" hostname=host3
6:
7: DetTwoLdc1 10 "DetTwo LDC #1" hostname=host4
8: DetTwoLdc2 11 "DetTwo LDC #2" hostname=host5
9:
10: DetThreeLdc 20 "DetThree LDC" hostname=host6
11:
12: AloneLdc 30 "Single LDC" hostname=host7 topLevel=Y
13:
14: >GDC
15: gdc1 1 "GDC #1" hostname=host8 topLevel=Y
16: gdc2 2 "GDC #2" hostname=host9 topLevel=Y
17:
18: >TRIGGER_HOST
19: triggerHost1 1 "Trigger host 1" hostname=hostT
20:
21: >DETECTORS
22: DetOne 1 "Detector 1" topLevel=Y
23: DetTwo 2 "Detector 2" topLevel=Y
24: DetThree 3 "Detector 3" topLevel=Y
25:
26: >SUBDETECTORS
27: DetOneSubOne 1 "Detector 1 Sub-detector 1"
28: DetOneSubTwo 2 "Detector 1 Sub-detector 2"
29: DetOneSubThree 3 "Detector 1 Sub-detector 3"
30:
31: >TRIGGER_MASK
32: TriggerMask1 1 "Trigger mask 1"
33: TriggerMask2 2 "Trigger mask 2"

The LDCs declaration (lines 2-12) concerns the seven LDCs. For each machine we
have a DATE name, the identifier, a short description and the hostname. Please note
that most of the LDCs are not marked as “topLevel” and therefore cannot be
directly selected from the runControl Human Interface. Only AloneLdc can
be directly selected or deselected.

The GDCs are declared in lines 14-16. All GDCs can be directly selected or
deselected via the runControl Human Interface.

Lines 18-19 declare the trigger host.
ALICE DAQ and ECS manual

Example of a DAQ system 65
The three detectors and the three sub detectors of the first detector are declared in
lines 21-29. The three detectors can be (de)selected via the runControl Human
Interface.

Finally lines 31-33 declare the two trigger masks available in this DAQ system.

The two trigger masks declarations are illustrated below:

 4.4 Example of trigger configurationListing

1: > cat ${DATE_DB_DIR}/testConfig/triggers.config
2: >TRIGGER_MASK
3: TriggerMask1 DetOne DetTwo DetThree
4: TriggerMask2 DetOne

The first trigger (triggerMask1) activates all the detectors while the second trigger
mask (triggerMask2) activates the first detector only.

The detectors are defined as follows:

 4.5 Example of detectors configurationListing

1: > cat ${DATE_DB_DIR}/testConfig/detectors.config
2: >DETECTORS
3: DetOne DetOneSubOne DetOneSubTwo DetOneSubThree
4: DetTwo DetTwoLdc1 DetTwoLdc2
5: DetThree DetThreeLdc
6:
7: >SUBDETECTORS
8: DetOneSubOne DetOneLdc1
9: DetOneSubTwo DetOneLdc2

10: DetOneSubThree DetOneLdc3

The three detectors are defined in lines 2-5. The sub-detectors of the first detector
are defined in lines 7-10.

The event building policies are defined as:

 4.6 Example of event-building configurationListing

1: > cat ${DATE_DB_DIR}/testConfig/eventBuildingControl.config
2: >EVENT_BUILDING_CONTROL
3: SOR nobuild
4: SORF nobuild
5: EOR nobuild
6: EORF nobuild
7:
8: PHY TriggerMask1 build
9: PHY TriggerMask2 build
10: PHY build
11:
12: CAL DetOne build
13:
14: CAL DetOne DetTwo DetThree build
15:

The above configuration example drives the event builder not to build SOR and
EOR events (lines 3-6). Physics events triggered by TriggerMask1 will be built as
well as events triggered by TriggerMask2. Physics events without trigger mask
will be built from all the LDCs. Calibration events involving DetOne alone will be
ALICE DAQ and ECS manual

66 Configuration databases
�

built using this detector, while calibration events involving all detectors will be
built using data coming from all LDCs. The detectors involved in each calibration
trigger are extracted from the eventDetectorPattern field of the event header.

The DATE banks are defined as:

 4.7 Example of banks configurationListing

1: > cat ${DATE_DB_DIR}/testConfig/dateBanks.config
2: >BANKS
3:
4: # --- LDCs ---
5: DetOneLdc1 IPC ${DATE_SITE_CONFIG}/LDC.key 150000 control readout
6: DetOneLdc2 IPC ${DATE_SITE_CONFIG}/LDC.key 150000 control readout
7: DetOneLdc3 IPC ${DATE_SITE_CONFIG}/LDC.key 300000 control readout
8:
9: DetTwoLdc1 \
10: PHYSMEM /dev/physmem1 5M readoutDataPages \
11: IPC ${DATE_SITE_CONFIG}/LDC.key 1.5M readout \
12: IPC ${DATE_SITE_CONFIG}/LDC.key1 * control
13: DetTwoLdc2 \
14: PHYSMEM /dev/physmem1 5M readoutDataPages \
15: IPC ${DATE_SITE_CONFIG}/LDC.key 1.5M readout \
16: IPC ${DATE_SITE_CONFIG}/LDC.key1 * control
17:
18: DetThreeLdc IPC ${DATE_SITE_CONFIG}/LDC.key 100K control readout
19:
20: AloneLdc IPC ${DATE_SITE_CONFIG}/LDC.key 10000 control readout
21:
22: # --- GDCs ---
23: gdc1 IPC ${DATE_SITE_CONFIG}/GDC.key 10M control eventBuilder
24: gdc2 IPC ${DATE_SITE_CONFIG}/GDC.key 10M control eventBuilder

The banks to be implemented in the three LDCs of the first detector are defined in
lines 5-7. They all contain the resources needed for control and data flow. They are
all implemented using IPC shared memory and their sizes are 150000 (LDCs 1 and
2) and 300000 (LDC 3) bytes. These block are partitioned into the separate regions
needed to store the DATE control block, the data pages, the FIFOs and all other
resources needed by readout.

The two LDCs of the second detector use PHYSMEM to allocate their readout
data pages. This is the typical case for a DDL-based DAQ system. The other
resources needed by the readout process are allocated using IPC via the given
keys for a size of 1.5 MB. The DATE control segment is handled via IPC, using a
separate block whose size is equal to the size of the DATE control block itself.

The LDC of the third detector has 100 KB handled via IPC. The same mechanism is
used for the stand-alone LDC, with a size of 10000 bytes.

The two GDCs use an identical configuration of a single 10 MB IPC segment for the
DATE control block and for all the resources needed by the event builder.

Using the above example configuration to fill the database, here is the report from
the dumpDbs utility:
ALICE DAQ and ECS manual

Example of a DAQ system 67
 4.8 Example of dumpDbs outputListing

1: > dumpDbs
2: Roles DB:
3: 0) id: 1 LDC DetOneLdc1 hostname:host1 "DetOne LDC #1" madeOf:Undefin

ed bankDescriptor:0
4: [...]
5: 9) id: 1 Detector DetOne hostname:N/A "Detector 1" madeOf:Subdetector

 TOP-LEVEL
6: [...]
7: 12) id: 1 Subdetector DetOneSubOne hostname:N/A "Detector 1 Sub-detec

tor 1" madeOf:LDC
8: [...]
9: 15) id: 1 Trigger-Host triggerHost1 hostname:hostT "TriggerHost 1" ma

deOf:Undefined
10: 16) id: 1 Trigger-Mask TriggerMask1 hostname:N/A "Trigger mask 1" ma

deOf:Undefined
11: 17) id: 2 Trigger-Mask TriggerMask2 hostname:N/A "Trigger mask 2" ma

deOf:Undefined
12: Max LDC:30, Max GDC:2, Max Detector:3, Max Subdetector:3, Max Trigge

r-Host:1, Max Trigger-Mask:2
13: ...
14: Trigger DB:
15: 0) id: 1 TriggerMask1
16: detectorPattern:0000000e = DetOne+DetTwo+DetThree =>
17: ldcPattern:DetOneLdc1+DetOneLdc2+DetOneLdc3+DetTwoLdc1+DetTwoL

dc2+DetThreeLdc (6 LDCs)
18: 1) id: 2 TriggerMask2
19: detectorPattern:00000002 = DetOne
20: => ldcPattern:DetOneLdc1+DetOneLdc2+DetOneLdc3 (3 LDCs)
21: ...
22: Detectors DB:
23: 0) Detector id: 1 DetOne (made of:Subdetector)
24: subdetectorPattern:DetOneSubOne+DetOneSubTwo+DetOneSubThree (3 su

bdetectors)
25: => ldcPattern:DetOneLdc1+DetOneLdc2+DetOneLdc3 (3 LDCs)
26: 1) Detector id: 2 DetTwo (made of:LDC)
27: ldcPattern:DetTwoLdc1+DetTwoLdc2 (2 LDCs)
28: => ldcPattern:DetTwoLdc1+DetTwoLdc2 (2 LDCs)
29: [...]
30: 3) Subdetector id: 1 DetOneSubOne (made of:LDC)
31: ldcPattern:DetOneLdc1 (1 LDC)
32: [...]
33: ...
34: Banks DB:
35: LDC DetOneLdc1 (host1): descriptor:0 1 bank(s)
36: ipc "${DATE_SITE_CONFIG}/LDC.key" size:150000 => control readout re

adoutReadyFifo readoutFirstLevelVectors readoutSecondLevelVector
readoutDataPages edmReadyFifo

37: [...]
38: LDC DetTwoLdc1 (host4): descriptor:3 3 bank(s)
39: physmem "/dev/physmem.device" size:5242880 => readoutDataPages
40: ipc "${DATE_SITE_CONFIG}/LDC.key" size:1572864 => readout readoutRe

adyFifo readoutFirstLevelVectors readoutSecondLevelVectors edmRea
dyFifo

41: ipc "${DATE_SITE_CONFIG}/LDC.key1" size:-1 => control
42: [...]
43: GDC gdc1 (host8): descriptor:7 1 bank(s)
44: ipc "${DATE_SITE_CONFIG}/GDC.key" size:10485760 => control eventBui

lder eventBuilderReadyFifo eventBuilderDataPages
45: [...]
46: ...
47: Event building control DB:
48: 0) eventType:StartOfRun all-events NO-BUILD
49: [...]
50: 4) eventType:Physics triggerPattern:00000000-00000002=1 BUILD
51: 1:TriggerMask1
52: 5) eventType:Physics triggerPattern:00000000-00000004=2 BUILD
53: 2:TriggerMask2
54: [...]
55: ...
ALICE DAQ and ECS manual

68 Configuration databases
�

The output of the utility has been edited for brevity and formatting purposes.

The following declared roles are shown:

• LDCs (line 3).

• Detector and SubDetectors (lines 5,7).

• Trigger host (line 9).

• Trigger masks (lines 10-11).

The two elements added dynamically by the database package to each role are the
madeOf field (used to specify the components of a role) and the bankDescriptor ID
pointing to the specific host role entry in the banks database. Note the TOP-LEVEL
attribute that specifies the entities that can be directly selected using the
runControl Human Interface.

Line 12 reports the number of entities declared in the database. These values are
used by DATE to allocate global structures within a run.

Follows the trigger database (lines 14-20). The dumpDbs utility complements the
static information retrieved from the databases with some derived information,
such as the detector and LDC pattern corresponding to each trigger mask.

For the detectors database (lines 22-32) the dumpDbs utility appends the derived
information of the list of LDCs corresponding to each detector and subdetector.

The banks database is reported (lines 34-45) for each host with the list of all banks,
their support, size and entities. The individual sizes are not given, since these can
be computed only at run-time according to the actual configuration.

Finally, the event-building control is shown (lines 47-54) with some NO BUILD
rules (for start of run records) and some “by-trigger” rules.

4.7 The programming interface

The DATE database package provides a common interface to access some of the
database content, in particular the data of the ‘static databases’ described in
Section 4.3. It is not required to use this interface to operate DATE. Information in
this chapter is given for developer information only, since it is mainly used by
DATE actors.

The way to access data is the same for all information: the database is opened,
loaded, and is mapped onto the process address space. Access is provided via
memory-mapped, read-only operations. After a successful mapping the following
information is made available to the calling process:

a. pointer to an array describing the database, the size (number of entries) of the
database is given by an int and can also be given by the array itself (each DB has
the last entry with invalid ID set to DB_ID_INVALID).

b. a set of max*Id variables where the maximum defined ID is given. This value
can be used to size at run-time structures with one element for each ID. The
value of the maximum ID is guaranteed to be less than or equal to the static
ALICE DAQ and ECS manual

The programming interface 69
maximum value as defined in ${DATE_COMMON_DEFS}/event.h.

Once a database is successful mapped into the process address space, it can be
reloaded only explicitly via an unload/load sequence. Consecutive load calls
produce no effect.

All entries require the definitions given by the files
${DATE_COMMON_DEFS}/event.h and ${DATE_DB_DIR}/dateDb.h. These
files can be included either by specifying the full path or via “-I” C include
directive.

In this section, a definition is given for the following entities:

• macros used to manipulate and test bit masks and bit patterns.

• base types used to represent the entities defined in the static databases.

• entries used to load, unload and perform other operations through the static
databases.

• pointers and variables where the databases and their associated information is
made available to the calling process.

Several other access methods to more specific data are available and defined in
${DATE_DB_DIR}/dateDb.h and fully documented in the header file. It includes
means to list equipment, retrieve run parameters, parse configuration files, browser
detector ID/name/code mapping, etc.

Bit test macro

C Synopsis #include “event.h”
#include “dateDb.h”

#define DB_TEST_BIT(bitMaskOrPattern, id)

Description The DB_TEST_BIT macro can be used for all bit masks and bit patterns to
test for the assertion of a given ID. It returns the boolean value TRUE if the id is set,
FALSE otherwise. The macro can be used directly or indirectly in boolean-driven
statements, e.g. the following lines of code:

 if (DB_TEST_BIT(mask, id)) idIsSet();
 if (DB_TEST_BIT(mask, id) == TRUE) idIsSet();

shall execute the function idIsSet() if id is set in mask.
ALICE DAQ and ECS manual

70 Configuration databases
�

dbIdType
DB_ID_INVALID
dbLdcPatternType
eventDetectorPatternType
eventTriggerPatternType

C Synopsis #include “event.h”
#include “dateDb.h”

Description The basic type dbIdType defines the data storage element used to represent all IDs
used in the DATE static databases, being LDC, GDC, Trigger Host, Trigger Mask,
Detector, Subdetector or EDM Host. Within the same role, different entities must
have different IDs. The same ID can be used for entities of different roles.

An ID equal to DB_ID_INVALID has either not been set or it is not applicable to a
given record/entity.

DB_WORDS_IN_LDC_MASK

C Synopsis #include “event.h”
#include “dateDb.h”

Description Number of 32-bit words used to store a dbLdcPatternType. Can be used to scan
and size a LDC pattern.

dbRoleType

C Synopsis #include “event.h”
#include “dateDb.h”

typedef enum {
 dbRoleUndefined,
 dbRoleUnknown,
 dbRoleGdc,
 dbRoleLdc,
 dbRoleEdmHost,
 dbRoleHltProxy,
 dbRoleHltProducer,
 dbRoleHltRoot,
 dbRoleDetector,
 dbRoleSubdetector,
 dbRoleTriggerHost,
 dbRoleTriggerMask,

 dbRoleDdg,
 dbRoleFilter
} dbRoleType;
ALICE DAQ and ECS manual

The programming interface 71
Description The dbRoleType enumeration type is used to define the role of a given record.

dbMemType

C Synopsis #include “event.h”
#include “dateDb.h”

typedef enum {
 dbMemUndefined,
 dbMemIpc,
 dbMemHeap,
 dbMemBigphys,
 dbMemPhysmem
} dbMemType;

Description Define the method used to implement the control and (optionally) data buffers.
This enumeration applies only to hosts where DATE actors need run-time memory
support (LDC, GDC, EDM, Trigger Host). Where this is not applicable or has not
been correctly defined, the dbMemUndefined value is used.

dbMemTypeNames

C Synopsis #include “event.h”
#include “dateDb.h”

const char * const dbMemTypeNames[];

Description Maps any memory type to a description string. Use as
dbMemTypeNames[dbMemType].

dbRoleDescriptor

C Synopsis #include “event.h”
#include “dateDb.h”

typedef struct {
 char *name;
 char *hostname;
 char *description;
 dbIdType id;
 dbRoleType role;
 dbHltRoleType hltRole;
 unsigned topLevel : 1;
 unsigned active : 1;
 dbRoleType madeOf;
 int bankDescriptor;
} dbRoleDescriptor;
ALICE DAQ and ECS manual

72 Configuration databases
�

Description This is the structure used to represent the records of the roles database. It includes
the following fields:

• name of the entity.

• hostname of the entity (where applicable).

• description of the entity.

• ID of the entity.

• role of the entity.

• hltRole of the entity.

• flag topLevel to designate the entity as selectable from the runControl
Human Interface (if TRUE).

• active flag to indicate whether the entity is active or not.

• the madeOf field to tell what the role is made of (e.g. a detector will be made
of either subDetectors or LDCs).

• index of the bankDescriptor that defines the banks and supports to be made
available on the given role (where applicable).

dbTriggerDescriptor

C Synopsis #include “event.h”
#include “dateDb.h”

typedef struct {
 dbIdType id;
 eventDetectorPatternType detectorPattern;
} dbTriggerDescriptor;

Description Represent a record from the trigger static database. The record includes:

• ID of the trigger, as defined in the roles database.

• the detector pattern associated to the given trigger.

Each record of this type associates a trigger (identified by its ID) to the
corresponding detector pattern where
TEST_BIT(detectorPattern, detectorId) returns TRUE if the detector
with the given ID is active in the given trigger mask.

dbDetectorDescriptor

C Synopsis #include “event.h”
#include “dateDb.h”

typedef struct {
 dbIdType id;
 dbRoleType role;
ALICE DAQ and ECS manual

The programming interface 73
 dbLdcPatternType componentPattern;
} dbDetectorDescriptor;

Description Represent a record from the detectors static database. The record includes:

• ID of the detector, as defined in the roles database.

• role (detector or subDetector) of the described entity.

• the ldc pattern or detector pattern associated to the given detector.

The structure dbDetectorDescriptor describes the sub-detectors or the LDCs
that belong to the given detector (regardless of the status of their actual
connection).

dbEventBuildingRule

C Synopsis #include “event.h”
#include “dateDb.h”

typedef struct {
 eventTypeType eventType;
 unsigned build : 1
 enum {
 fullBuild,
 useDetectorPattern,
 useTriggerPattern
 } type;
 union {
 eventDetectorPatternType detectorPattern;
 eventTriggerPatternType triggerPattern;
 } pattern;
} dbEventBuildingRule;

Description Represent a record from the event building database. The record includes:

• the type of the event associated to the rule.

• a build (TRUE)/no-build (FALSE) flag.

• the type of build: full, partial by detector pattern or partial by
trigger pattern.

• the detector pattern or the trigger pattern used for partial event
building (where applicable).

The structure eventBuildingRule describes the rules followed by the event
builder. These rules can specify either a build or a no-build rule on a per-event type
basis. Furthermore, the rule can result in a request for partial building.
ALICE DAQ and ECS manual

74 Configuration databases
�

dbBankType

C Synopsis #include “event.h”
#include “dateDb.h”

typedef enum {
 dbBankControl,

 dbBankReadout,
 dbBankReadoutReadyFifo,
 dbBankReadoutFirstLevelVectors,
 dbBankReadoutSecondLevelVectors,
 dbBankReadoutDataPages,

 dbBankHltAgent,
 dbBankHltReadyFifo,
 dbBankHltSecondLevelVectors,
 dbBankHltDataPages,

 dbBankEventBuilder,
 dbBankEventBuilderReadyFifo,
 dbBankEventBuilderDataPages
} dbBankType;

Description Describes the various banks that can be made available on the hosts where DATE
actors can run.

The dbBankControl bank contains the control section. It must be present on all
DATE hosts.

The dbBankReadout bank contains all banks needed by a LDC. This bank can be
partitioned into the dbBankReadoutReadyFifo,
dbBankReadoutFirstLevelVectors,
dbBankReadoutSecondLevelVectors and dbBankReadoutDataPages
banks.

Similarly, the dbBankHltAgent bank contains all banks needed by a HLT agent.
This bank can be partitioned into the dbBankHltReadyFifo, the
dbBankHltSecondLevelVectors and the dbBankHltDataPages banks.

The dbBankEventBuilder bank contains all entities needed on GDCs. It can be
partitioned into the sub-entities dbBankEventBuilderReadyFifo and
dbBankEventBuilderDataPages.

dbBankNames

C Synopsis #include “event.h”
#include “dateDb.h”

const char * const dbBankNames[];
ALICE DAQ and ECS manual

The programming interface 75
Description Maps any memory bank to a description string. Use as
dbBankNames[dbBankType].

dbBankPatternType

C Synopsis #include “event.h”
#include “dateDb.h”

Description Basic type used to describe a Memory Bank pattern.

dbBankComponents

C Synopsis #include “event.h”
#include “dateDb.h”

const dbBankPatternType dbBankComponents[];

Description Read-only array containing, for each DATE bank, the pattern of its components (if
any). The information stored in this array can be used to find out what the
sub-entities are. For example, the entry corresponding to the
dbBankEventBuilder contains dbBankEventBuilderReadyFifo and
dbBankEventBuilderDataPages, therefore the two corresponding bits of
dbBankComponents[dbBankEventBuilder] has the two bits
dbBankEventBuilderReadyFifo and dbBankEventBuilderDataPages
set.

dbSingleBankDescriptor
dbBankDescriptor

C Synopsis #include “event.h”
#include “dateDb.h”

typedef struct {
 dbMemType support;
 char *name;
 int size;
 dbBankPatternType pattern;
} dbSingleBankDescriptor;

typedef struct {
 int numBanks;
 dbSingleBankDescriptor *banks;
} dbBankDescriptor;

Description Structures used to describe a single bank (within one DATE host) and all the banks
(on one DATE host).
ALICE DAQ and ECS manual

76 Configuration databases
�

The size field contains either an explicit total amount of memory (in bytes) to be
used to store the bank or the value -1, meaning that the bank will be sized
according to its content (if possible).

DB_LOAD_OK
DB_UNLOAD_OK
DB_LOAD_ERROR
DB_PARSE_ERROR
DB_INTERNAL_ERROR
DB_BAD_SIZING
DB_PAR_ERROR
DB_UNKNOWN_ID

C Synopsis #include “event.h”
#include “dateDb.h”

Description The above definitions cover all case of errors during handling of the static
databases.

DB_LOAD_OK and DB_UNLOAD_OK report the successful load/unload of a database.

DB_LOAD_ERROR reports a problem loading a database due to the underlying file
system. If this error is received, check for the presence of the file and for the access
permissions.

DB_PARSE_ERROR reports a problem parsing a database. The line that generated
the error can be retrieved using the dbGetLastLine call.

DB_INTERNAL_ERROR reports an unexpected error condition. More explanations
may be found in the messages stored in dateDb log facility. This error should be
reported to the DATE support team.

DB_BAD_SIZING is the result of a ID out of range or a limit out of range.

DB_PAR_ERROR is returned when one or more input parameters have invalid
values.

DB_UNKNOWN_ID corresponds to an ID that is within the valid values but has no
corresponding DATE role associated.

All the above errors can be decoded and printed using the dbDecodeStatus call.

dbDecodeStatus

C Synopsis #include “event.h”
#include “dateDb.h”

char *dbDecodeStatus(status);
ALICE DAQ and ECS manual

The programming interface 77
Description This routine will map the given status code - as returned by any of the dateDb
routines - to a description string.

Returns The description string if the error code is amongst the allowed choices, an error
message otherwise. The pointer is to a static location, overwritten by subsequent
calls to the routine.

dbGetLastLine

C Synopsis #include “event.h”
#include “dateDb.h”

char *dbGetLastLine();

Description Get the last line decoded by the last dbLoad*() call. This line can be used for
diagnostic purposes, e.g. to understand parse errors. This call is relevant only when
operating with file-based databases, not in MySQL mode.

Returns Pointer to a char array containing the last line decoded. The pointer is to a static
location, overwritten by subsequent parsing of the databases.

dbDecodeRole

C Synopsis #include “event.h”
#include “dateDb.h”

char *dbDecodeRole(dbRoleType role);

Description Returns a description string for the given role (or an error message if the input
parameter is not correct).

Returns Pointer to a read-only char array.

dbDecodeBankPattern

C Synopsis #include “event.h”
#include “dateDb.h”

char *dbDecodeBankPattern(dbBankPatternType bankPattern);

Description Returns a description string for the given bank pattern (or an error message if the
input parameter is not correct).

Returns Pointer to a read-only char array.
ALICE DAQ and ECS manual

78 Configuration databases
�

dbRolesDb
dbSizeRolesDb
dbMaxLdcId
dbMaxGdcId
dbMaxTriggerMaskId
dbMaxDetectorId
dbMaxSubdetectorId
dbMaxHltProxyId
dbMaxHltProducerId
dbMaxHltRootId
dbMaxTriggerHostId
dbMaxEdmHostId
dbMaxDdgId
dbMaxFilterId
dbLoadRoles
dbUnloadRoles

C Synopsis #include “event.h”
#include “dateDb.h”

dbRoleDescriptor *dbRolesDb
int dbSizeRolesDb;
dbIdType dbMaxLdcId;
dbIdType dbMaxGdcId;
dbIdType dbMaxTriggerMaskId;
dbIdType dbMaxDetectorId;
dbIdType dbMaxSubdetectorId;
dbIdType dbMaxHltProxyId;
dbIdType dbMaxHltProducerId;
dbIdType dbMaxHltRootId;
dbIdType dbMaxTriggerHostId;
dbIdType dbMaxEdmHostId;
dbIdType dbMaxDdgId;
dbIdType dbMaxFilterId;

int dbLoadRoles();
int dbUnloadRoles();

Description The roles database is fully described by the above entities that can be loaded
using the dbLoadRoles call.

All the IDs described by the database are limited by the values given in dbMax*Id.

The entry dbLoadRoles loads all the above entities when called the first time.
Successive calls to dbLoadRoles do not force a reload of the entries. This can be
achieved by using the dbUnloadRoles call followed by dbLoadRoles.

On failure to load the database, the values given in the associated variables are
undefined.
ALICE DAQ and ECS manual

The programming interface 79
Returns DB_LOAD_OK/DB_UNLOAD_OK in case of success, otherwise an error code.

dbRolesFind
dbRolesFindNext

C Synopsis #include “event.h”
#include “dateDb.h”

int dbRolesFind(char *roleName, dbRoleType role);
int dbRolesFindNext();

Description These routines implement a fast-find algorithm on the roles database. The
dbRolesFind entry initializes a find for the given entity with the given role
(dbRoleUnknown will search for any entity with the given name). The search can
be continued starting from the point of the last match using the
dbRolesFindNext entry.

For semantically-correct databases, whenever the role is different from
dbRoleUnknown, at most one match should be returned and therefore
dbRolesFindNext should never return a match.

Returns -1 for no match, index to dbRolesDb is a match is found.

dbTriggersDb
dbSizeTriggersDb
dbLoadTriggers
dbUnloadTriggers

C Synopsis #include “event.h”
#include “dateDb.h”

dbTriggerDescriptor *dbTriggersDb;
int dbSizeTriggersDb;

int dbLoadTriggers();
int dbUnloadTriggers();

Description The dbTriggersDb pointer can be loaded and unloaded using the
dbLoadTriggers and dbUnloadTriggers routines. Consecutive calls to the
dbLoadTriggers routine do not reload the database. To achieve this, use a
dbUnloadTriggers/dbLoadTriggers sequence.

Returns DB_LOAD_OK/DB_UNLOAD_OK in case of success, otherwise an error code.
ALICE DAQ and ECS manual

80 Configuration databases
�

dbGetDetectorsInTriggerPattern

C Synopsis #include “event.h”
#include “dateDb.h”

int dbGetDetectorsInTriggerPattern(
 eventTriggerPatternType triggerPat,
 eventDetectorPatternType detectorPat
);

Description The detectorPat is loaded with the detector pattern that corresponds to the
given triggerPat. This information is static and needs to be combined with the
dynamic run-time mask of active detectors to give the actual run-time pattern.

Returns DB_LOAD_OK in case of success, otherwise an error code.

dbGetLdcsInTriggerPattern

C Synopsis #include “event.h”
#include “dateDb.h”

int dbGetLdcsInTriggerPattern(
 eventTriggerPatternType triggerPat,
 dbLdcPatternType ldcPat
);

Description The ldcPat is loaded with the LDC pattern that corresponds to the given
triggerPat. This information is static and needs to be combined with the
dynamic run-time mask of active LDCs to give the actual run-time pattern.

Returns DB_LOAD_OK in case of success, otherwise an error code.

dbDetectorsDb
dbSizeDetectorsDb
dbLoadDetectors
dbUnloadDetectors

C Synopsis #include “event.h”
#include “dateDb.h”

dbDetectorDescriptor *dbDetectorsDb;
int dbSizeDetectorsDb;

int dbLoadDetectors();
int dbUnloadDetectors();
ALICE DAQ and ECS manual

The programming interface 81
Description The dbDetectorsDb pointer can be loaded and unloaded using the
dbLoadDetectors and dbUnloadDetectors routines. Consecutive calls to the
dbLoadDetectors routine do not reload the database. To achieve this, use a
dbUnloadDetectors/dbLoadDetectors sequence.

Returns DB_LOAD_OK/DB_UNLOAD_OK in case of success, otherwise an error code.

dbGetLdcsInDetector

C Synopsis #include “event.h”
#include “dateDb.h”

int dbGetLdcsInDetector(
 dbIdType detectorId,
 dbLdcPatternType ldcPat
);

Description The ldcPat is loaded with the LDC pattern that corresponds to the given
detectorId. This information is static and needs to be combined with the
dynamic run-time mask of active LDCs to give the actual run-time pattern.

Returns DB_LOAD_OK in case of success, otherwise an error code.

dbGetLdcsInDetectorPattern

C Synopsis #include “event.h”
#include “dateDb.h”

int dbGetLdcsInDetectorPattern(
 eventDetectorPatternType detectorPat,
 dbLdcPatternType ldcPat
);

Description The ldcPat is loaded with the LDC pattern that corresponds to the given
detectorPat. This information is static and needs to be combined with the
dynamic run-time mask of active LDCs to give the actual run-time pattern.

Returns DB_LOAD_OK in case of success, otherwise an error code.
ALICE DAQ and ECS manual

82 Configuration databases
�

dbEventBuildingControlDb
dbSizeEventBuildingControlDb
dbLoadEventBuildingControl
dbUnloadEventBuildingControl

C Synopsis #include “event.h”
#include “dateDb.h”

eventBuildingRule *dbEventBuildingControlDb;
int dbSizeEventBuildingControlDb;

int dbLoadEventBuildingControl();
int dbUnloadEventBuildingControl();

Description The dbEventBuildingControlDb pointer can be loaded and unloaded using the
dbLoadEventBuildingControl and dbUnloadEventBuildingControl
routines. Consecutive calls to the dbLoadEventBuildingControl routine do
not reload the database. To achieve this, use a
dbUnloadEventBuildingControl/dbLoadEventBuildingControl
sequence.

Returns DB_LOAD_OK/DB_UNLOAD_OK in case of success, otherwise an error code.

dbBanksDb
dbSizeBanksDb
dbLoadBanks
dbUnloadBanks

C Synopsis #include “event.h”
#include “dateDb.h”

dbBanksDescriptor *dbBanksDb;
int dbSizeBanksDb;

int dbLoadBanks();
int dbUnloadBanks();

Description The dbBanksDb pointer can be loaded and unloaded using the dbLoadBanks
and dbUnloadBanks routines. Consecutive calls to the dbLoadBanks routine do
not reload the database. To achieve this, use a dbUnloadBanks/dbLoadBanks
sequence.

Returns DB_LOAD_OK/DB_UNLOAD_OK in case of success, otherwise an error code.
ALICE DAQ and ECS manual

The programming interface 83
dbUnloadAll

C Synopsis #include “event.h”
#include “dateDb.h”

int dbUnloadAll();

Description Unload all the static databases from the memory of the calling process. If the
operation fails, the final result is unpredictable.

Returns DB_UNLOAD_OK if the operation succeeds, error from individual unload routines
otherwise.
ALICE DAQ and ECS manual

84 Configuration databases
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
5
The monitoring
package

This chapter describes how to write a monitoring program. After a brief
introduction to the monitoring in DATE, the monitoring library is explained and its
use from all the most commonly used programming languages is shown.

5.1 Monitoring in DATE . 86

5.2 Online monitoring and role name 88

5.3 Monitoring and Analysis in C/C++ 89

5.4 Monitoring by detector . 100

5.5 Monitoring from ROOT . 101

5.6 The “eventDump” utility program. 102

5.7 Monitoring of the online monitoring scheme 103

5.8 Monitoring configuration . 104

86 The monitoring package
�

5.1 Monitoring in DATE

A data-acquisition system requires monitoring of experimental data (online and
offline data, on online and offline hosts). Some possible applications for monitoring
tasks are:

• statistical analysis of the experimental stream to evaluate the quality of the
physics conditions.

• detailed analysis of the experimental data.

• occasional checking of the overall status of the data-acquisition system (e.g.
operator status panel).

To perform these and other functions, DATE provides the monitoring package,
whose objective is to offer a uniform interface for the development and the support
of user-written monitoring programs tailored to specific needs. The monitoring
interface allows access to events coming from the live experimental stream or from
a Permanent Data Storage (PDS)1 media, with statistical or strict monitoring
purposes, on online (part of the data-acquisition system) or offline (totally
detached) hosts.

When monitoring is performed in its full online configuration (see Figure 5.1 top
diagram), the monitoring program gets the data from a local monitoring buffer,
filled from the online data producer (the readout process on LDCs and the
eventBuilder process on GDCs). This approach is the most efficient for what
concerns the use of system resources but might impose an unacceptable load on the
online host, already charged with acquisition and control tasks.

 5.1 The DATE online monitoring, local and remote configurationsFigure

ONLINE host (LDC or GDC)

readout

monitoring buffer

local

eventBuilder
monitoring

program

ONLINE host (LDC or GDC)

monitoring buffer

remote

monitoring

program

OFFLINE host

OR

readout

eventBuilder
OR

1. The term PDS - defined in the ALICE technical proposal [14]- is used here with a wider
meaning, also covering permanent, semi-permanent and temporary storage, usually located
in the physical path between the data-acquisition system online buffer and the final PDS.
ALICE DAQ and ECS manual

Monitoring in DATE 87
To “off-load” the online environment, it is possible to run the monitoring program
on another host, linked to the first via LAN or WAN (see Figure 5.1 bottom
diagram). The result is similar to what we achieved in the first configuration, with
the advantage of freeing resources on the data-acquisition host, at the price of an
increased load on the interconnecting network between the two machines. The
same data-acquisition system can have - without reconfiguration - several local and
remote monitoring programs, all running simultaneously and getting their data
from the same source. However, each monitoring program can receive its data to
monitor from one source at a time. It is possible to switch forth and back between
different data sources within the same monitoring program, although this practice
is not recommended.

The need of monitoring only sub-events coming from selected detector(s) exists in
ALICE. A special function has therefore been added to the monitoring library:
monitoring by detector. This function extends the remote monitoring scheme,
applying it to a set of LDCs, the active hosts attached to one or more detectors. The
monitoring library gets the sub-events from all the LDCs, performs a “reduced”
event building procedure and delivers the result to the monitoring program. Only
events where all the selected LDCs contribute with one sub-event will be selected.

Another operating mode of the monitoring library - shown in Figure 5.2 - allows
the same functions on offline streams, usually coming from the Permanent Data
Storage. This setup allows direct monitoring from the PDS server or from other
hosts (batch server, desktop or workstation) not connected to the PDS media. This
configuration can optionally make use of the SHIFT/CASTOR disks servers
available at CERN.

 5.2 The DATE offline monitoringFigure

PDS-attached host

PDS

local

monitoring

program

remote

monitoring

program

Remote host

During the connection phase, monitoring programs can declare themselves to the
monitoring scheme. This allows easy tracing of each client and makes it possible to
“fine tune” the runtime parameters of the monitoring system.

When a monitoring program connects itself to the experimental stream, it has the
capability to declare a monitoring policy for any given event type. This policy can
require all events for monitoring (must policy), as many as possible of the events
(most policy) a random share of events for monitoring (yes policy), whatever events
are available (few policy) or no monitoring at all (none policy). It is important to
understand the impact of a given monitoring policy on the data-acquisition system
and on the monitoring environment. A monitoring program requesting a “must”
ALICE DAQ and ECS manual

88 The monitoring package
�

policy must process the information as fast as it will be offered or it might stall the
entire data-acquisition stream. On the other hand, the exclusion of certain classes of
events - unwanted for a given type of monitoring - will reduce the overhead on the
online host and on the interconnecting network, as less data will be stored and
transferred between the online producer (readout or eventBuilder) and the
consumer (the monitoring program).

Monitoring programs have the choice to stall if no data is available or to continue
with their execution (knowing that no data has been received). This allows the
implementation of event-driven processes (such as X11 clients) that should not be
blocked in absence of data.

Another feature of the monitoring library is to let a monitoring program discard all
data eventually stored in the monitoring buffer. This is useful to access only future
events at any given point in time.

Some experimental setups might “hide” their data-acquisition hosts behind routers
or firewalls, making remote monitoring difficult or impossible. To solve this
problem, the DATE monitoring library allows a mechanism called “relayed
monitoring”, where the monitoring channel travels through a dedicated relay host
(visible from the offline host and with access to the hidden online host). The scheme
is described in Figure 5.3. It is possible to filter the access through the relay host
only to a restricted set of clients, according to the type of monitoring requested.
Relayed monitoring performs worse than direct monitoring and should be used
only whenever absolutely unavoidable.

 5.3 The DATE relayed monitoringFigure

ONLINE HOST

monitoring
remote

monitoring

program

OFFLINE HOSTFIREWALL

PDS

buffer

or PDS-attached host

RELAY

HOST

5.2 Online monitoring and role name

DATE allows any given host (LDC or GDC) to operate within multiple independent
setups (e.g. one setup for production and a second setup for commissioning), also
simultaneously. To identify the environment of each setup, DATE assigns to the
same host different role names, one for each setup. The monitoring library uses the
same mechanism in order to monitor a setup when a choice between multiple data
streams is available.
ALICE DAQ and ECS manual

Monitoring and Analysis in C/C++ 89
The recommended way to select the appropriate setup is to use role names rather
than host names during the declaration of the data source (see the description of
the monitorSetDataSource routine). When doing so, the monitoring library
automatically sets the environment in order to access the appropriate data stream.
This mechanism requires at runtime an active and valid connection to the DATE
configuration database in order to resolve the role name and the associated host
name. This is also the mechanism recommended for local monitoring of a machine
that belongs to multiple setups (the monitoring library sets the environment
according to the selected role and then proceeds with the same path as for local
online monitoring, therefore not using TCP/IP to move the events).

If it is not possible to specify a role name (e.g. for monitoring clients that do not
have a connection to the DATE configuration database) it is still possible to select
any setup by defining the environment variable DATE_ROLE_NAME before
connecting to the remote host (in this case the host name must be used as data
source).

If no role name is selected at runtime, the monitoring library chooses the first
alphabetical match on the target host name (or for the local host in case of local
monitoring). For single-setup environments this solution chooses the only available
data stream and therefore always give the expected result. For machines running
multiple instances of DATE, an arbitrary selection is implied and this may lead to
unexpected behaviors at runtime (according to the content of the DATE
configuration database). For this reason we strongly recommend to use the role
name whenever this is possible.

To summarize:

1. if the monitoring program has access to the DATE configuration database,
always use the role name as data source (also for local monitoring): this
procedure gives the maximum flexibility, is fully reconfigurable via the DATE
database and always connect to the right data source regardless of the HW/SW
configuration in use with no runtime overhead.

2. If the machine being monitored plays a single role, it is still possible to use the
anonymous syntax “:” for local monitoring or the TCP/IP hostname for remote
monitoring. This scheme is less flexible, is not recommended but still works.

3. If the monitoring program has no access to the DATE configuration database,
then it is not possible to use the role name to connect to the (obviously remote)
data source. In this case, the data source must contain the TCP/IP hostname
and the DATE_ROLE_NAME should be given as environment variable within
the monitoring process.

5.3 Monitoring and Analysis in C/C++

A monitoring program should accomplish the following steps in order to perform
its function:

1. declare the source providing the data to monitor.

2. declare itself to the monitoring scheme.
ALICE DAQ and ECS manual

90 The monitoring package
�

3. declare - if necessary - the monitor policies to be followed.

4. declare - if necessary - the wait/nowait policy to be followed.

5. get the available event(s) from the monitoring stream.

The monitoring scheme can be used from programs written in C or C++.

This chapter describes the C/C++ callable interface available within the DATE
monitoring package and its characteristics.

5.3.1 Some simple examples

In Listing 5.1 we have a very simple example of a monitoring program written in C.

 5.1 Example of event dump in C:Listing

1: #include <stdio.h>
2: #include <stdlib.h>
3: #include “event.h”
4: #include “monitor.h”
5:
6: void printError(char *where, int errorCode) {
7: fprintf(stderr,
8: “Error in %s: %s\n”,
9: where, monitorDecodeError(errorCode));
10: exit(1);
11: } /* End of printError */
12:
13: int main() {
14: int status;
15:
16: status = monitorSetDataSource(“:”);
17: if (status != 0)
18: printError(“monitorSetDataSource”, status);
19: status = monitorDeclareMp(“C demo mp”);
20: if (status != 0)
21: printError(“monitorDeclareMp”, status);
22: for (;;){ /* Start of endless loop */
23: void *ptr;
24: struct eventStruct *event;
25:
26: status = monitorGetEventDynamic(&ptr);
27: if (status != 0)
28: printError(“monitorGetEventDynamic”, status);
29: event = (struct eventStruct *)ptr;
30: printf(“Run #:%d, EventId #:%08x%08x, Type:%ld, size:%ld,

Data size:%d\n”,
31: event->eventHeader.eventRunNb,
32: event->eventHeader.eventId[0],
33: event->eventHeader.eventId[1],
34: event->eventHeader.eventType,
35: event->eventHeader.eventSize,
36: event->eventHeader.eventSize -

event->eventHeader.eventHeadSize);
37: free(ptr);
38: } /* End of endless loop */
39: } /* End of main */

The program consists of a declaration phase followed by an endless loop where
events are fetched from the monitoring stream and their header is printed. Please
note that the program never terminates: the process must be killed via an external
signal (e.g. ^C - obtained pressing the “control” and the “C” keys - via the
keyboard for interactive processes).
ALICE DAQ and ECS manual

Monitoring and Analysis in C/C++ 91
Looking at the example more in details, we can observe the following features:

Line 3: inclusion of the DATE event declaration module.

Line 4: inclusion of the DATE monitoring declaration module.

Line 16: declaration of the source of monitoring data (in this case, the online local
host).

Line 19: declaration of the monitoring program.

Line 26: the next available event is transferred from the monitoring buffer.

Other examples are available in the directory ${DATE_MONITOR_DIR}, namely the
source code for the eventDump utility (described in Section 5.6), named
eventDump.c.

5.3.2 The monitoring package files

The distribution point for the monitoring package is ${DATE_MONITOR_DIR}
(defined by the DATE setup procedure). In this area it is possible to find the
following files:

• ${DATE_MONITOR_DIR}/monitor.h: prototypes and definitions for
monitoring programs written in C.

• ${DATE_MONITOR_DIR}/${DATE_SYS}/libmonitor.a: monitoring library
for any language capable of calling C code (e.g. C and C++).

• ${DATE_MONITOR_DIR}/${DATE_SYS}/libmonitorstdalone.a:
monitoring library with reduced functionality for non-SHIFT hosts (see below).

• ${DATE_MONITOR_DIR}/${DATE_SYS}/libmonitor.so: non-SHIFT
shareable monitoring library.

C monitoring programs should include the prototypes declaration monitor.h either
including in the C compilation statement the output of the command
date-config --cflags (on machines running DATE or with DATE installed) or
copying the prototypes declaration locally (non-DATE machines) and providing
the appropriate C compilation directives (specifications vary from architecture to
architecture).

Monitoring programs require the libraries specified by the output of the command
date-config --monitorlibs (with SHIFT access) or
date-config --monitorlibs=noshift (without SHIFT access).

The SHIFT library - referenced by the monitoring I/O package - is used to access
hosts whose PDS is available on SHIFT servers, e.g. the CERN ALICE WorkGroup
server (LXPLUS), the CERN batch processing facility (SHIFT) and the CERN
CASTOR servers. If access to any of these facilities is not required, the inclusion of
SHIFT libraries is not necessary. The output image can therefore be used for local
file I/O or for remote network monitoring. These libraries are distributed by the
CASTOR support team at CERN.

Hardware and software platforms not part of the standard DATE distribution - but
possible clients of the DATE monitoring scheme - can still use the monitoring
library by copying the necessary files and performing local compilation and link.
ALICE DAQ and ECS manual

92 The monitoring package
�

5.3.3 Error codes

The entries belonging to the monitoring library may return a monitoring-specific
error code. This code can be either zero for success or non-zero for failure. To
decode an error code please refer to the ${DATE_MONITOR_DIR}/monitor.h file
or call the entry monitorDecodeError described in the next section.

5.3.4 The monitoring callable library

This section describes the entries available in the monitoring library. Each entry is
described in the C version. For the decoding of error codes eventually returned by
the entries, please refer to Section 5.3.3.

monitorSetDataSource

C Synopsis #include “monitor.h”

int monitorSetDataSource(char* source)

Description The source of events to monitor is declared. The syntax of the monitor source
parameter is given in Table 5.1.

 5.1 Monitor source parameter syntaxTable

“:” local online (default)

“file” local file (both full and relative paths are accepted, full
path recommended)

“@target:” remote online on machine “target”

“file@target” remote file on machine “target” (the full path to the
file should be given)

“@target1@target2:” remote online on machine “target1” via the relay host
“target2”

“file@target1@target2” remote file on machine “target1” via the relay host
“target2” (the full path to the file should be given)

“^det[+det]” remote online on the LDCs belonging to the detector
“det” (plus-separated lists can be used to specify more
than one detector) and active in the current run

“@*:” remote online on the GDCs active in the current run

“=partition” remote online on the GDCs active in the partition

The parameter “target” can specify either a role name (recommended) or a TCP/IP
host name (see Section 5.2). If remote monitoring is used and “target” points to the
local host, then local monitoring is assumed and no transfer take place over TCP/IP
(not even via local sockets). The monitoring library is able to resolve host aliasing
and multi-interface hosts.
ALICE DAQ and ECS manual

Monitoring and Analysis in C/C++ 93
For detector and GDCs monitoring, the run number must be specified in the
environment variable DATE_RUN_NUMBER. The run number can also be
re-defined during the monitoring, but in this case a monitorLogout followed by a
new call to monitorSetDataSource is recommended.

For partition monitoring, the run number is not needed. The monitoring library
will reconfigure at each start of run adding or removing GDCs according to the
configuration of the partition itself. Monitoring programs must take care in
handling the events when these come from consecutive runs.

Returns Zero in case of success, else an error code (see Section 5.3.3 for more details).

monitorDeclareMp

C Synopsis #include “monitor.h”

int monitorDeclareMp(char* mpName)

Description The given string is used to declare the monitoring program. This can be used for
debugging, for fine tuning and to monitor the online monitoring scheme (see
Section 5.7).

Returns Zero in case of success, else an error code (see Section 5.3.3 for more details).

monitorDeclareTable

C Synopsis #include “monitor.h”

int monitorDeclareTable(char** table)

Description A table describing the desired monitoring policy is declared within the monitoring
scheme. Each monitoring program can declare a monitoring table at any time. This
table will be used for all subsequent calls to monitorSetDataSource and will be kept
valid in case monitorLogout is called. It is possible to declare a table in the middle
of a monitoring stream: this will force a flush of all events eventually available in
the monitoring buffer and in the monitoring channel.

The input parameter should have the following C syntax:

char *table[] = {
 [“event type”, “monitor type”,]*
 NULL
};

where the fields event type and monitor type can assume one of the values
and aliases given in Table 5.2 and in Table 5.3.
ALICE DAQ and ECS manual

94 The monitoring package
�

 5.2 Event typesTable

Event type Single-word alias Short alias

“All events” “All_events” “ALL”

“Start of run” “Start_of_run” “SOR”

“Start of run files” “Start_of_run_files” “SORF”

“Start of data” “Start_of_data” “SOD”

“Start of burst” “Start_of_burst” “SOB”

“End of burst” “End_of_burst” “EOB”

“Physics event” “Physics_event” “PHY”

“Calibration event” “Calibration_event” “CAL”

“System Software
Trigger event”

“System_software_
trigger_event”

“SST”

“Detector Software
Trigger event”

“Detector_software_
trigger_event”

“DST”

“End of data” “End_of_data” “EOD”

“End of run” “End_of_run” “EOR”

“End of run files” “End_of_run_files” “EORF”

“Event format error” “Event_format_error” “FERR”

 5.3 Monitor typesTable

Monitor type Action

“all” all events of this type are monitored (100%)

“most” a priority sample of the events of this type is monitored

“yes” a sample of the events of this type is monitored

“few” events of this type may be monitored

“no” no events of this type are monitored

All declarations are case-insensitive and can be shortened to the nearest unique
string (watch out for ambiguous shortening, e.g. “end of run” can match either
“end of run” or “end of run files”).

The features of the various sampling modes are:

– all: all the events that match the selection are stored in the monitoring buffer.
This mode must be used with extreme care as the DAQ stops if the monitoring
program(s) cannot keep up with the throughput of the data flow.

– most: as long as there is buffer space, the events that match the selection are
copied in the monitoring buffer. These events may be dropped to make space to
“all” events. If the monitoring program cannot keep up with the data flow, the
overflowing events are dropped. This monitoring mode should be used only to
ALICE DAQ and ECS manual

Monitoring and Analysis in C/C++ 95
select rare events, not to disrupt the distribution of events received by other
monitoring programs. Although delivery of events is not guaranteed (they may
be dropped to make space to “all” events and they may not get recorded if the
monitoring buffer contains only “most” events), it should have a much higher
delivery success compared to a “yes” policy in case of multiple monitoring
programs running with high input event rates.

– yes: as long as there is buffer space, the events that match the selection are
stored in the monitoring buffer. These events may be dropped if “all” or
“most” events need space to be stored and may drop “few” events if they
cannot be stored due to lack of space in the monitoring buffer.

– few: events matching the selection are monitored as long as they can be stored
and may be removed in case events matching other monitoring type criteria
need space in the monitoring buffer. This policy may be useful for very slow
monitoring programs such as event displays.

– no: the events of the given type are not published for monitoring.

Please note that for the case of one monitoring program active, “most”, “yes” and
“few” will yield the same result.

For setups with multiple monitoring client, events monitored as “no” by one client
may still be stored in the monitored buffer if other monitoring program(s)
requested them.

The default table is:

char *defaultTable[] = {
 “All”, “yes”,
 NULL
};

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorDeclareTableExtended

C Synopsis #include “monitor.h”

int monitorDeclareTableExtended(char** table)

Description The purpose of this entry is to declare a monitoring policy where event attributes
and/or trigger classes can be used for the selection method. Functionally, this
routine is equivalent to monitorDeclareTable. The input parameter has the
following syntax:

char *table[] = {
 [“event type”, “monitor type”, “attributes”, “triggers”,]*
 NULL
};

The event type and monitor type fields have the same syntax as for
monitorDeclareTable (see Table 5.3 and Table 5.2).
ALICE DAQ and ECS manual

96 The monitoring package
�

The attributes and the triggers fields may contain either one number, a list of
numbers separated by “|” (any of the given patterns would select the event) or by
“&” (all the bits of the pattern must be asserted to select the event). For example:

• “2” selects events with bit 2 asserted.

• “2|3” selects events with bit 2 or with bit 3 asserted.

• “2&3” selects events with bits 2 and 3 asserted.

It is not possible to mix “|”s and “&”s in the same declaration, e.g. “2&3|4” returns
a runtime error.

Empty lists or wildcard “*” lists can be specified to disable the selection criteria. For
example:

• “PHY” “Y” “1” ““ selects physics events with attribute 1 asserted, regardless of
the status of their trigger pattern.

• “PHY” “Y” “*“ “1” selects physics events with trigger pattern 1 asserted.

• “PHY” “Y” “1” “2” selects physics events with attribute 1 and trigger pattern 2
asserted.

• “PHY” “Y” selects physics events (same as “PHY” “Y” “*” “*”).

Both system and user attributes can be specified: for user attributes, use the
attribute number (as used in the *_USER_ATTRIBUTE() macro). System attributes
should be specified via the corresponding symbol from the
${DATE_COMMON_DEFS}/event.h definition file.

If a non-empty trigger pattern is declared, events whose trigger pattern has not
been validated are NOT selected for monitoring. If the trigger pattern is not
specified, all events are potentially selected regardless of the validation status of
their trigger pattern.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorDeclareTableWithAttributes

C Synopsis #include “monitor.h”

int monitorDeclareTableWithAttributes(char** table)

Description The purpose of this entry is to declare a monitoring policy where event attributes
can be used for the selection method. Functionally, this routine is equivalent to
monitorDeclareTableExtended.

This entry is deprecated and is left for backward compatibility only. The entry
monitorDeclareTableExtended should be used instead (with the
triggers.field left empty).

The input parameter has the following syntax:

char *table[] = {
 [“event type”, “monitor type”, “attributes”,]*
ALICE DAQ and ECS manual

Monitoring and Analysis in C/C++ 97
 NULL
};

For the description of the attributes parameter, see the description of
monitorDeclareTableExtended.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorGetEvent

C Synopsis #include “monitor.h”

int monitorGetEvent(void *buffer, long size)

Description The next available event (if any) is copied in the region pointed by buffer for a
maximum length of size bytes. In case of failure, a zero-length event is returned.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorGetEventDynamic

C Synopsis #include “monitor.h”

int monitorGetEventDynamic(void **buffer)

Description The next available event (if any) is copied on space reserved from the process heap
and returned to the caller. The caller must take care of properly disposing the event
via the free system call: failure to do so will exhaust the resources associated to
the process and can severely degrade the overall system performances. If no data is
available and the channel set in noWait mode the pointer returned will be NULL; in
this case the event does not need to be disposed.

Returns Zero in case of success (also if no event is available), otherwise an error code (see
Section 5.3.3 for more details).

monitorFlushEvents

C Synopsis #include “monitor.h”

int monitorFlushEvents(void)

Description All the data available in the monitoring buffer is discarded. The next event
transferred over the monitoring channel will be injected in the monitoring stream
after this call terminates.
ALICE DAQ and ECS manual

98 The monitoring package
�

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorSetWait

C Synopsis #include “monitor.h”

int monitorSetWait(void)

Description After this call completes, if the monitoring program requests an event when the
monitoring buffer and the monitoring channel are empty, the monitoring program
will stop and wait for new events. This is the default behaviour of the monitoring
library.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorSetNowait

C Synopsis #include “monitor.h”

int monitorSetNowait(void)

Description After this call completes, if the monitoring program requests an event when the
monitoring buffer and the monitoring channel are empty, the monitoring program
will continue and an empty event will be returned.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorControlWait

C Synopsis #include “monitor.h”

int monitorControlWait(int flag)

Description The wait/nowait behavior of the monitoring library is set accordingly to the flag
parameter:

• true (wait): TRUE or (0 == 0)

• false (nowait): FALSE or (0 == 1)

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).
ALICE DAQ and ECS manual

Monitoring and Analysis in C/C++ 99
monitorSetNoWaitNetworkTimeout

C Synopsis #include “monitor.h”

int monitorSetNoWaitNetworkTimeout(int timeout)

Description Set the timeout for nowait reads of events via the network. When the timeout
parameter is negative or zero, nowait reads of events through the network return
immediately. When the timeout parameter is > 0, reads of events through the
network may wait - if no events are available - up to the given time expressed in
milliseconds. The default value of the timeout is -1 (no timeout). This call does not
apply to the “monitoring by detector” scheme.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

monitorSetSwap

C Synopsis #include “monitor.h”

int monitorSetSwap(int 32BitWords, int 16BitWords)

Description This entry controls the behavior of the monitoring library when a network channel
is opened with a host of different endianness (e.g. PC/ALPHA vs.
Motorola/IBM/Sun). The two parameters are used to control the swapping
algorithm to be used for the data portion of the incoming events; their possible use
depends on the actual content of the data (payload) portion of the event and can be
summarized as in Table 5.4.

 5.4 Bytes swapping controlTable

Data buffer data type 32BitWords 16BitWords

8-bit entities (signed or unsigned characters) FALSE FALSE

32-bit entities (e.g. VMEbus data) TRUE FALSE

16-bit entities FALSE TRUE

In case swapping is not known beforehand, monitoring programs should set the
two flags to FALSE and swap the data manually once their type is known: this will
avoid unnecessary double-swapping at run-time.

The values that can be given to the two flags are:

• true (perform swapping): TRUE or (0 == 0)

• false (do not swap): FALSE or (0 == 1)

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).
ALICE DAQ and ECS manual

100 The monitoring package
�

monitorDecodeError

C Synopsis #include “monitor.h”

char *monitorDecodeError(int code)

Description The entry returns the pointer to a string describing the given error code.

Returns Pointer to a zero-terminated static, read-only string.

monitorLogout

C Synopsis #include “monitor.h”

int monitorLogout(void)

Description The monitoring link is closed and all resources allocated for this monitoring
program are freed. The link will be automatically re-opened when the monitoring
program requests the next event. This entry can be used whenever the monitoring
program expects long pauses, such as operator input. It imposes a certain overhead
on the monitoring scheme and therefore should not be used too frequently.

Returns Zero in case of success, otherwise an error code (see Section 5.3.3 for more details).

5.4 Monitoring by detector

Monitoring by detector is the mechanism where events are received from all the
active LDCs belonging to a particular detector (or a set of detectors). This is done by
opening a set of TCP/IP channels and handling them individually. Events are
received on a channel-by-channel basis and a reduced event building procedure is
applied. All the LDCs active within the given detectors set must give one sub-event
in order to perform a successful event building. Whenever one or more LDCs fail to
provide a sub-event for a given event, this will be discarded.

The output of a “monitoring by detector” procedure is a event with the following
characteristics:

• Event ID, event type, version ID and run number as for the input
events.

• Trigger pattern: picked up at random from any of the sub-events.

• Detector pattern set according to the monitoring data source.

• LDC ID and GDC ID set to VOID_ID.

• ATTR_SUPER_EVENT and ATTR_BY_DETECTOR_EVENT set.

• Time set to the moment the event has been delivered to the monitoring
ALICE DAQ and ECS manual

Monitoring from ROOT 101
program.

Almost all the calls of the monitoring library are supported by the “monitoring by
detector” scheme. Please note that, as the library must handle a set of monitoring
channels, if a runtime error is returned by any call the error could come from any of
the active channels. More error may occur during such an operation, in which case
only the first error is reported. The requested operation is anyway attempted on all
the channels, regardless from the status of each individual transactions. If any of
the calls returns an error status, the status of the connected channels is
unpredictable: a full logout/login procedure is therefore recommended.

5.5 Monitoring from ROOT

5.5.1 The ROOT system

The ROOT [10] system provides a set of Object Oriented frameworks with all the
functionality needed to handle and analyze large amounts of data in a very efficient
way. As the data is defined as a set of objects, specialized storage methods are used
to get direct access to the separate attributes of the selected objects without having
to touch the bulk of the data. Included in ROOT are histogramming methods in 1, 2
and 3 dimensions, curve fitting, function evaluation, minimization, graphics and
visualization classes to allow the easy setup of an analysis system that can query
and process the data interactively or in batch mode.

Thanks to the built-in CINT C++ interpreter the command language, the scripting,
or macro, language and the programming language are all C++. The interpreter
allows for fast prototyping of the macros since it removes the time consuming
compile/link cycle. It also provides a good environment to learn C++. If more
performance is needed, the interactively developed macros can be compiled using
a C++ compiler.

The system has been designed in such a way that it can query its databases in
parallel on MPP machines or on clusters of workstations or high-end PC’s. ROOT is
an open system that can be dynamically extended by linking external libraries.

From ROOT, the “standard” C library is loaded inside ROOT and called directly.
The features available to the monitoring module are the same offered to any C/C++
program. Special care must be given to all asynchronous events, such as timers,
signals and graphics handling.

Monitoring from ROOT can be done either directly - using the libraries and files
provided by the basic DATE distribution - or via AMORE (see Chapter 23).

5.5.2 Direct monitoring in ROOT

When the direct monitoring approach is used, the “standard” DATE monitoring
library is loaded in the ROOT context and programs run as any other C/C++
applications. In this environment, special care must be given to a proper integration
between the monitoring program and the ROOT framework, especially for what
concerns handling of signals, timers and graphics events.
ALICE DAQ and ECS manual

102 The monitoring package
�

The calling sequence for direct monitoring in ROOT is the same as for standard
C/C++ programs.

No support is available for ROOT/CINT, only compiled code can be used.

5.6 The “eventDump” utility program

Part of the standard DATE kit is the utility eventDump. This program allows easy
monitoring of any stream, useful for a quick check or debugging of a running
system. The standard DATE kit provides a version of the eventDump utility for
each architecture fully supported or only with monitoring support.

To run the utility on DATE hosts, execute the standard DATE setup and issue the
command

> eventDump buffer

For non-DATE hosts, copy the utility in your ${PATH} (or declare a proper alias)
and then issue the same command as for DATE hosts.

A list of all available options can be shown via the “-?” command-line flag. Some of
the parameters are:

• -b brief output (does not display event data).

• -c check events data against a pre-defined data pattern (test environment
only).

• -s use static data buffer rather then dynamic memory.

• -a use asynchronous reads (nowait mode).

• -i interactive: pauses after each event and proposes a mini-menu with several
options.

• -t allows the declaration of a monitoring table, e.g.:

-t “SOR yes EOR y”

will show only start-of-run and end-of-run events, skipping all events of
other types.

• -T allows the declaration of an extended monitoring table e.g.:

-T “SOR y * * PHY Y 1&3 *”

will monitor start-of-run records and physics events with attributes 1
and 3 set, skipping all the other events.

The buffer parameter must always be specified. The syntax to be used is the same
as for the parameter of the monitorSetDataSource entry (see Table 5.1). The
attributes shall be specified according to the SITE-specific conventions (USER
attributes) or the central ${DATE_COMMON_DEFS}/event.h definition (e.g.
ATTR_P_START - corresponding to a phase start event - can be monitored
specifying the attribute 64).
ALICE DAQ and ECS manual

Monitoring of the online monitoring scheme 103
5.7 Monitoring of the online monitoring
scheme

The DATE monitoring environment may influence the performance of the data
acquisition system it is connected to, usually reducing its performance. This can be
caused either by high-debit monitoring schemes (too many clients and/or too
demanding clients) or by “bad” architectural designs. For this main reason, DATE
provides a set of tools to monitor the status of the monitoring scheme in a “live”
environment. This set includes the following utilities (whose alias is defined by the
DATE setup procedure):

• monitorClients: live display of the list of all registered clients, eventually
with the name of the host they are running on.

• monitorSpy: live, highly detailed snapshot of the monitor scheme data
structures.

It is not possible - and not logical - to monitor the status of an offline or relayed
monitoring host.

For machines belonging to multiple DATE setups, it is mandatory to set the
environment variable DATE_ROLE_NAME to its appropriate value prior to run
any of the monitoring utilities. If this is not done, the monitoring library arbitrarily
chooses the first match in alphabetical order with the host name and uses it, which
may lead to incorrect results for multi-role hosts.

5.7.1 The monitorClients utility

The monitorClients utility gives a report on the usage of the monitoring
scheme local to the host it runs on. Without parameters, it gives the list of monitor
programs currently registered and their monitoring policies. If used with the “-t”
option, it gives a continuous list of the clients and their usage of the monitoring
streams (in number of events and number of bytes transferred): the display process
can be interrupted using the ^C (obtained pressing the “control” and the “C”
keys) quit signal.

Two examples on the use of the monitorClients utility are given in Listing 5.2.

 5.2 Examples of use of the monitorClients utilityListing

1: > monitorClients
2: 10 clients max, 1 client declared, 2 processes attached
3: PID SOR EOR SORF EORF SOB EOB PHYS CAL EOL

FERR Monitoring program:

4: 53648 yes yes yes yes yes yes yes yes yes
yes DATE V3 event dump V1.08@host

5: > monitorClients -t
6: Displaying top clients: ^C to stop
7: PID Bytes/s Mp
8: 37678 843113 DATE V3 event dump V1.08@host
9: PID Events/s Mp
10: 37678 242 DATE V3 event dump V1.08@host
ALICE DAQ and ECS manual

104 The monitoring package
�

5.7.2 The monitorSpy utility

The monitorSpy utility can be used to obtain a snapshot of the entire monitoring
scheme in use on the host where the utility is executed. An example of the
information that can be obtained with this utility is given in Listing 5.3.

 5.3 Examples of use of the monitorSpy utilityListing

1: > monitorSpy
2: mbMonitorBufferSize: 0x30000000 13114156 bytes
3: ---
4: mbMaxClients: 0x30000004 10 clients max
5: mbMaxEvents: 0x30000008 100 events max
6: mbEventSize: 0x3000000c 131072 bytes/event
7: mbEventBufferSize: 0x30000010 13107200 bytes event data
8: ---
9: mbNumSignIn: 0x30000024 1 clients
10: mbNumSignOut: 0x30000028 0 clients
11: mbForcedExits: 0x3000002c 0 clients
12: mbTooManyClients: 0x30000030 0 clients
13: mbEventsInjected: 0x30000034 0 events
14: mbBytesInjected: 0x30000038 0 bytes
15: --
16: monitorEvents: 0x30001030
17: mbOldestEvent: 0x30000018 -1 (index)
18: mbFirstFreeEvent: 0x3000001c -1 (index)
19: mbCurrentEventNumber:0x30000020 0 (sequential number)
20: --
21: monitorClients: 0x30000040 10 clients [0 .. 9]
22: mbNumClients: 0x30000014 1 client(s), 1

process(es) attached
23: 0@30000040..300001d7: PID:22202, reg#:1, mp:"DATE V3 event

dump V1.08", last event:0, events:0, bytes:0, WAITING
24: Monitor policy:
25: SOR :monitor -=-
26: [...]
27: FORMATERROR :monitor -=-
28: 1 .. 9: unused
29: --
30: mbFreeEvents: 0x30001b20, 1 frag, size: 13107188 tot,

13107188 avg
31: Free list:
32: 0x30001b2c (13107188, 0x00c7fff4) 0x00000000 0x00000000

0x00000000 0x00000000
33: monitorEventsData: 0x30001b2c

5.8 Monitoring configuration

Functionally, hosts participating in a DATE monitoring scheme can be defined as:

1. monitoring hosts running specific monitoring programs, either part of the
standard monitoring package (e.g., the utility eventDump) or written by any
DATE user.

2. monitored hosts offering monitoring streams to monitoring programs: these
streams can be online streams (from a live data-acquisition system) or offline
streams (typically files available from permanent data storage).

3. relaying hosts offering a liaison between monitored and monitoring hosts that
cannot establish a direct link due to the presence of network firewalls or
ALICE DAQ and ECS manual

Monitoring configuration 105
gateways.

It is possible to have any combination of those three functions, e.g. hosts who are
monitoring, are monitored and offer relayed monitoring to other hosts.

The DATE monitoring scheme needs to be configured only for monitored and
relaying hosts in the following situations:

1. online monitored hosts (LDCs or GDCs) offering online, offline or relayed
monitoring to itself and/or to other hosts.

2. hosts that are part of a DATE system offering offline or relayed monitoring to
other hosts.

No setup is required for hosts only wishing to perform monitoring, either on the
same or on remote hosts and a complete DATE installation is not required. For the
developer of the monitoring program itself, a library is available and can be used in
stand-alone mode. Otherwise, monitoring programs can be exported to any type of
hosts (within the set of supported architectures) with no need for extra files or
special setups. No daemons are necessary and no configuration is required on the
monitoring hosts.

We will now review the configuration needed on monitored and relayed hosts to let
them perform their function.

5.8.1 Creation of configuration files

The monitoring scheme can be configured using three separate files:

• ${DATE_SITE_CONFIG}/monitoring.config: this file is optional and can
be used to control a complete DATE site, all types of hosts.

• ${DATE_SITE}/${DATE_HOSTNAME}/monitoring.config: this file is
mandatory for online hosts and must be created by the DATE system
administrator. It is not required for offline, relayed or monitoring hosts.

• /etc/monitoring.config: this file is optional and can be used to control the
behavior of relaying hosts; it is not used by online or offline monitored hosts.

The above files should be created using the following commands:

 5.4 Creation of configuration filesListing

1: > touch file
2: > chmod u=rw,g=rw,o=r file

where “file” is the full path of the file to be created. Once created, the
configuration files can be edited and parameters can be specified as a list of names
followed by their associated values. Comments can be inserted via the “#” sign,
e.g.:

This is a comment
PARAMETER VALUE # comment

These files can be changed at any time. Some of the parameters (those labelled in
Table 5.5 as “Online monitoring only”) require the acquisition to be stopped and no
ALICE DAQ and ECS manual

106 The monitoring package
�

active clients (the command monitorClients - see Section 5.7.1 - can be used to
check for registered clients). All the other parameters can be changed at any time
and will become active for all new clients (monitored and monitoring hosts) started
after the modification(s).

When the same parameter is defined in multiple files, a “last given” policy is
followed, that is:

• parameters defined in ${DATE_SITE_CONFIG}/monitoring.config can
be overwritten by equivalent definitions from any of the other files.

• parameters defined in
${DATE_SITE}/${DATE_HOSTNAME}/monitoring.config are final for
local monitoring and can be overwritten by equivalent definitions from
/etc/monitoring.config for relayed monitoring.

• parameters defined in /etc/monitoring.config are final and cannot be
overwritten.

Only exception to this scheme is the parameter LOGLEVEL, where the highest given
level is used regardless of their definition point (e.g. if the values 0, 20 and 10 are
specified, the value used will be 20).

The parameters that can be specified in the configuration files are listed in Table 5.5.

 5.5 Monitoring configuration parametersTable

Parameter name Used for Description

LOGLEVEL All types of monitoring Level for error, information
and debug statements gen-
erated by the monitoring
scheme

MAX_CLIENTS Online monitoring only Maximum number of cli-
ents allowed to be regis-
tered simultaneously

MAX_EVENTS Online monitoring only Maximum number of
events available for moni-
toring

EVENT_SIZE Online monitoring only Average event size

EVENT_BUFFER_SIZE Online monitoring only Size of buffer used to store
events data

EVENTS_MAX_AGE Online monitoring only Maximum age (in sec-
onds) of the events avail-
able for monitoring

MONITORING_HOSTS Online monitoring
Networked monitoring

Comma-separated list of
hosts allowed to perform
monitor-when-available
from this host

MUST_MONITORING_HOSTS Online monitoring
Networked monitoring

Comma-separated list of
hosts allowed to perform
all types of monitoring
from this host
ALICE DAQ and ECS manual

Monitoring configuration 107
For the MONITORING_HOSTS and MUST_MONITORING_HOSTS parameters, a
comma-separated list of hosts should be given, e.g.:

MONITORING_HOSTS localhost,pcxy,pcabc01

In the above example, the hosts allowed to perform “normal” monitoring are the
local host, all hosts whose name begins with pcxy (pcxy01, pcxy02 and so on) plus
the host pcabc01.

A host who is defined within the MONITORING_HOSTS list can only perform
monitoring-when-available. To be able to perform 100% monitoring, a host must be
in the MUST_MONITORING_HOST list.

If the parameter MUST_MONITORING_HOSTS is not specified, all hosts can perform
100% monitoring on the monitored machine. Conversely, if the parameter
MONITORING_HOSTS is not specified, all hosts can perform monitoring functions
on the given machine.

If processes on the local host are allowed to perform monitoring, the
MONITORING_HOSTS and MUST_MONITORING_HOSTS lists must contain the
localhost keyword. If the keyword localhost is not present, local monitoring
will not be allowed. This keyword is needed as local monitoring “escapes” from the
network protocol and is instead performed via memory-mapped direct access.
ALICE DAQ and ECS manual

108 The monitoring package
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
6
The readout
program

This chapter describes the DATE software running on the LDC that manages the
data stream. There are two processes in an LDC, namely readout and recorder.
The readout process waits for a trigger, reads out the front-end electronics, and
fills a FIFO with the sub-event data. The recorder process off-loads this FIFO and
sends the sub-event data to a local disk, to a named pipe, or to a GDC over the
network. In particular this chapter explains how to build and how to customize a
readout program. By using the generic readList library, the readout program
is organized as a collection of equipments. Each equipment can be programmed
independently, can be selected (activated and deactivated) and parameterized
before the run starts without changing the code. All the software is contained in the
DATE packages readout and readList.

6.1 The readout process . 110

6.2 The generic readList concept 115

6.3 Using the generic readList 117

6.4 The equipmentList library 118

110 The readout program
�

6.1 The readout process

The readout process and the recorder process are running in all the LDCs
participating in the data taking. This chapter is devoted to the readout process,
whereas the recorder process is covered in Section 10.3.

The readout process executes the suitable code to perform the front-end electronic
readout. This code is specified in a separate software module, called readList,
which has to be compiled and linked with the readout main program. The
readlist module consists of the following five routines:

• ArmHw, called at each start of run to perform the initialization;

• AsynchRead, called in the main event loop to perform the readout of the
hardware that produces an asynchronous flow of data;

• EventArrived, called in the main event loop to discover whether a trigger has
occurred;

• ReadEvent, called in the main event loop after the arrival of a trigger to
perform the readout of the hardware;

• DisArmHw, called at each end of run to perform the hardware rundown.

Figure 6.1 shows the structure of the readout program and how these routines are
called in the main event loop.

 6.1 Main event loop executed by the readout process.Figure

SOR scripts

begin

ArmHw

SOR files

AsynchRead

EventArrived

ReadEventhandle sub−event

?

?

DisArmHw

finish

event arrived

yes

no

no

yes

EOR scripts

EOR files

end
ALICE DAQ and ECS manual

The readout process 111
6.1.1 Start of run phases

At each start of run (SOR), the readout process performs the following sequence
of operations in the order described below:

1. maps to all memory banks that are configured for this LDC in the banks
database (see Chapter 4.3.6);

2. executes the common SOR scripts (if any), see “SOR.commands” in the ALICE
DAQ WIKI;

3. executes the detector SOR scripts (if any);

4. executes the specific SOR scripts (if any);

5. calls the routine ArmHw;

6. produces a SOR record: the eventType field of the base event header is set to
START_OF_RUN, the eventTypeAttribute field of the base event header is
set to START_OF_RUN_START and the payload is empty;

7. prepares the common SOR files (if any, one record per file);

8. prepares the detector SOR files (if any, one record per file);

9. prepares the specific SOR files (if any, one record per file);

10. produces a SOR record: the eventType field of the base event header is set to
START_OF_RUN, the eventTypeAttribute field of the base event header is
set to START_OF_RUN_END and the payload is empty.

The SOR sequences have been split into phases, corresponding to the points
enumerated above. At each time the timeout (given by the LDC run parameter
Max. time for SOR/EOR phases) is restarted to also allow longer initialization
or ending phases.

Once the SOR phase has been completed readout reads from the DATE data base
two configuration files:

1. readout.config, to select the GDC selection algorithm, the possibility to
dump the event payload during the run and activate the back-pressure monitor,
(see “readout.config” in the ALICE DAQ WIKI);

2. CDH.config that contains the readout instructions on how to print the
detector specific information stored in the CDH, (see “CDH.config” in the
ALICE DAQ WIKI).

If these two files don’t exist, readout uses the default configuration, described in
the ALICE DAQ WIKI:

• GDC_SELECTION_ALGORITHM = ORBIT_RAND

• READOUT_DUMP_PAYLOD = NO

• BCKP_MONITOR = NO

• CDH.print = FALSE
ALICE DAQ and ECS manual

112 The readout program
�

6.1.2 Main event loop

After the start of run phases, the readout process enters in the main event loop
(see Figure 6.1). It allocates memory for one sub-event, which depends on the value
of the LDC run parameter Paged data flag (see Chapter 3):

• for streamlined data (Paged data flag is 0) readout allocates the following:
an entry for an event descriptor in the readoutReadyFifo and memory from
the readoutData memory bank for the payload, whose size is given by the
LDC run parameter Max. event size.;

• for paged data (Paged data flag is 1) readout allocates the following: an
entry for an event descriptor in the readoutReadyFifo and memory for the
first level vector from the readoutFirstLevel memory bank.

The readout process calls the routine AsynchRead to activate the readout of
hardware that produces an asynchronous flow of data and then waits for a trigger
by calling the routine EventArrived: the arrival of a trigger can signal for
example a physics event or a start of burst (SOB) or an end of burst (EOB). If no
events are arriving (routine EventArrived returns 0), the innermost main event
loop is executed at maximum speed as long as there is no “end of run” request.

If the LDC run parameter startOfData/endOfData event enabled is set, the
readout process also exits the main event loop, when the timeout (given by LDC
run parameter startOfData timeout or endOfData timeout) to wait for
events of type START_OF_RUN or END_OF_RUN (see “DATA FORMAT” in the ALICE
DAQ WIKI) has expired.

Each time an event has been arrived, the readout process fills the base event
header fields for which it is responsible (including the field eventTimestamp to
tag the sub-event with an absolute timestamp), and it increments the run-time
variable Number of sub-events for all event types. Then the routine
ReadEvent is called, which is in charge of transferring the event data and for
filling the base event and equipment header fields (see Chapter 3). Afterwards the
readout process performs the following operations in the order described below:

1. checks that the mandatory fields in the base event header have been set by the
ReadEvent routines;

2. checks that the eventId field in the base event header filled by the routine
ReadEvent is not zero and has an increasing value for events of types
PHYSICS_EVENT and CALIBRATION_EVENT.;

3. checks whether the eventType field is START_OF_RUN for the first arrived
event. If this event has a different type or if it arrives after the startOfData
timeout period, then an “end of run” request with an error condition is issued.
The LDC run parameter startOfData/endOfData event enabled must
be set to enable this check, otherwise it is omitted;

4. checks whether the eventType field is END_OF_RUN after having received an
“end of run” request. If such an event does not arrive within the endOfData
timeout period, then the end of run phases (see Section 6.1.3) are executed
with an error condition. The LDC run parameter startOfData/endOfData
event enabled must be set to enable this check, otherwise an “end of run”
request leads directly to the end of run phases;

5. fills the eventGdcId field in the base event header for PHYSICS_EVENT and
ALICE DAQ and ECS manual

The readout process 113
CALIBRATION_EVENT events with a default value in order to achieve a fair
distribution of sub-event to multiple GDCs. The dispatch algorithm uses the
“number in run” part of the eventId field if FIXED TARGET mode (see
Section 3.4) or the “orbit counter” part of the eventId field if COLLIDER
mode. The eventGdcId field can be overwritten by the edmAgent process (see
Chapter 13). By default the destination of special event types (START_OF_RUN,
START_OF_RUN_FILES, END_OF_RUN, END_OF_RUN_FILES,
START_OF_BURST, END_OF_BURST) is the first GDC;

6. if FIXED TARGET mode is selected (see Section 3.4), it fills the “number in run”
part within the eventId field in the base event header for END_OF_BURST
events in such a way that it contains the last event number held in the header of
the last physics event in the burst and the number of events in the last burst.
These values are used by the event builder to make consistency checks based
upon independent criteria and redundant information.;

7. for START_OF_BURST events, it sets the run-time variable inBurst flag to 1,
and for END_OF_BURST events sets the run-time variable inBurst flag to 0;

8. for FIXED TARGET mode it fills the run-time variables Number of
sub-events in burst and Number of bursts in the shared memory
control region;

9. increments the run-time variable Number of triggers in the shared
memory control region for events of type PHYSICS_EVENT;

10. fills the eventSize field in the base event header by taking into account the
event scheme (streamlined or paged).;

11. sets the run-time variable Bytes injected in the shared memory control
region for all event types.

The readout process exits the main event loop, if one of the following six
conditions is met:

• the maximum number of events to be collected (given by the LDC run
parameter Max. number of sub-events) has been reached;

• the maximum number of bursts to be collected (given by the LDC run
parameter Max. number of bursts) has been reached and there is an
END_OF_BURST type of event;

• the maximum number of bytes to be collected (given by the LDC run parameter
Max. bytes to record) has been reached;

• the arrival of an “end of run” request combined with the following three cases:

– the parameter startOfData/endOfData event enabled is not set,
hence there is no waiting for an event of type END_OF_DATA;

– the parameter startOfData/endOfData event enabled is set and an
event of type END_OF_DATA has been received within the timeout (given by
the parameter endOfData timeout);

– the parameter startOfData/endOfData event enabled is set and an
event of type END_OF_DATA has not been received within the timeout
(given by the parameter endOfData timeout);

• an event of type START_OF_DATA has not been received within the timeout
(given by the parameter startOfData timeout) when the parameter
startOfData/endOfData event enabled is set;
ALICE DAQ and ECS manual

114 The readout program
�

• a fatal error has occurred.

All records are inserted in the readoutReadyFifo. In addition, they are also
injected in the buffer reserved for monitoring (see Chapter 5) if the following
conditions are met:

• the LDC run parameter Monitor enable flag is set to 1;

• a monitor program requesting this type of events is running;

• there is enough space in the monitoring buffer.

6.1.3 End of run phases

At each end of run (EOR), the readout process performs the following sequence of
operations in the order described below:

1. executes the common EOR scripts, if any, (see “EOR.commands” in the ALICE
DAQ WIKI);

2. executes the detector EOR scripts, if any;

3. executes the specific EOR scripts, if any;

4. calls the routine DisArmHw;

5. produces an EOR record: the eventType field of the base event header is set to
END_OF_RUN, the eventTypeAttribute field of the base event header is set
to END_OF_RUN_START and the payload is empty;

6. prepares the common EOR files, if any (one record per file);

7. prepares the detector EOR files, if any (one record per file);

8. prepares the specific EOR files, if any (one record per file);

9. produces an EOR record: the eventType field of the base event header is set to
END_OF_RUN, the eventTypeAttribute field of the base event header is set
to END_OF_RUN_END and the payload is empty;

10. updates the bookkeeping information with the run number, the physics events
count, the SOB records count, the EOB records count, the trigger count and the
burst count.

The EOR sequences have been split into phases, corresponding to the points
enumerated above. At each time the timeout (given by the LDC run parameter
Max. time for SOR/EOR phases) is restarted to also allow longer initialization
or ending phases.

6.1.4 Log messages

It is possible to choose where to direct the output of messages produced by the
readout process. The script readout_startup.sh located in directory
${DATE_READOUT_BIN} can be edited. The options proposed are the following:

• output via infoLogger (default);

• creation of an iconized xterm where all the output produced should appear;

• no output;
ALICE DAQ and ECS manual

The generic readList concept 115
• output to a file (e.g. /tmp/Readout@hostname.log);

• output to a file (e.g. ${DATE_SITE_TMP}/Readout@hostname.log).

By default the readout process uses the infoLogger package to report and trace
errors or abnormal conditions, and to trace state changes. The operator can tailor
these features to the required needs by setting the value of the LDC run parameter
Logging level (see the ALICE DAQ WIKI to operate the system).

The readout process also updates the bookkeeping information at the end of the
run through the LOGBOOK facility.

If the readout process crashes, a core dump for post-mortem analysis is produced
in the ${DATE_SITE_TMP}/${DATE_HOSTNAME}/readout directory.

6.2 The generic readList concept

This section describes how the readout program accesses the hardware by calling
the five routines of the readList module (see Figure 6.1), which contains the code
specific to a given electronics setup. Instead of writing several of these modules, the
generic readList concept allows to group the code for all the electronics setups in
another library called equipmentList (see Figure 6.2).

 6.2 The generic readList concept of the readout process.Figure

Arm

EventArrived
ReadEvent
DisArm

equipmentList

NNN
NNN

NNN

AsynchRead
NNN

NNN

readList.c

ArmHw
AsynchRead
EventArrived
ReadEvent
DisArmHw

main event loop

readout.c

configuration
equipment

The readout software specific to an electronics setup can be written separately for a
so-called equipment. One equipment is responsible for generating data from an
electronics board or a set of electronics boards, depending on how the readout
software is structured. A set of equipment-handling routines deals with one single
equipment, thus the code is more modular and readable. The routine names are
fixed by convention: the name is obtained by concatenating the prefix Arm,
DisArm, AsynchRead, ReadEvent and EventArrived with the name of the
equipment type NNN as declared by the equipment configuration. All the five
routines must be implemented for an equipment. If one of these functionalities is
not required, a dummy routine should be provided. The details of this library is
described in Section 6.4.
ALICE DAQ and ECS manual

116 The readout program
�

The equipment configuration defines the equipments used for each LDC. It is done
with the equipment databases (see Chapter 4).

An equipment may be repeated several times in a detector; each run-time call will
be distinguished by a different set of equipment parameters. The configuration file
specifies the selection of the active equipments and the setting of the parameters
that will be passed to the readout routines. Therefore, it is possible to modify the
readout program behaviour without changing the readout executable code.

As a result of this generic readList concept, the sub-events of an LDC are divided
further into smaller parts, called equipment data or fragments. Each equipment data
block begins with an equipment header, followed by the equipment raw data (see
Chapter 3). Hence a fully built event contains the sub-events from the various
LDCs, which in turn contain the fragments from the equipments.

In order to realize this concept, the generic readList module implements the
following functions:

• ArmHw
It loads the equipment configuration, identifies the equipments involved in the
readout of the LDCs, saves them in a table and then calls the ArmNNN routine
for each active equipment in the order specified in the configuration file. It also
sets the run-time variable Number of equipments to the number of data
generating equipments.

• AsynchRead
It calls the AsynchReadNNN routine for each active equipment configured in
the equipment database.

• EventArrived
It calls the EventArrivedNNN routine of the active equipment configured in
the equipment database.

• ReadEvent
It calls the ReadEventNNN routine for each active equipment. In addition it
generates the equipment header if it is an equipment generating data.

• DisArmHw
It calls the DisarmNNN routine for each active equipment.

The handling of the equipment routines must be further configured with the help
of the optional attributes GENDATA and TRIGGER. They are assigned to an
equipment type as part of the equipment configuration.

• GENDATA: Usually an equipment generates data, but it may be convenient to
isolate some specific processing in an equipment that does not generate any
data. Only the equipment routine ReadEventNNN is able to produce data when
the attribute GENDATA is set. If this attribute is set, then the equipment header is
generated and the ReadEventNNN routine is called with parameters to access
the equipment header and the raw data. If this attribute is omitted, then no
equipment header is generated and the equipment routine is called with
parameters that do not allow to access the equipment header and the raw data.

• TRIGGER: The trigger hardware plays a special role, since it is in charge to
indicate if a sub-event has arrived or not. This decision needs to be captured by
the EventArrivedNNN routine of an equipment. However, this equipment
routine is only called if the attribute TRIGGER is set. Several trigger equipments
may be declared in the equipment configuration, but only one per LDC should
ALICE DAQ and ECS manual

Using the generic readList 117
be active. If there are more of them, no warnings are given and only the first one
is used.

6.3 Using the generic readList

The use of the generic readList (see Section 6.2) requires the preparation of two
components:

• A source code file that contains the equipment routines to handle the readout of
all the equipments that may be activated in an LDC. A detailed description on
how to prepare it is given in Section 6.4.

• An entry in the equipment database describing the configuration of each active
equipment.

These two components are strictly correlated and must match one another. There is
no mechanism to make sure that this is the case. Error conditions due to a mismatch
are discovered at start of run and will immediately stop the run. The conventions
tying these files are the following:

• The name of the equipments in the equipment database constrains the name of
the equipment routines in the source code file. A prefix is added to the
equipment type, as explained in Section 6.2.

• The equipment routines must be declared using macros provided in
readList_equipment.h. These macros provide the link between the
equipment name (read by readList from the equipment database) and the
address of the readout routines (to be called by readList). The usage of these
macros is explained in Section 6.4.3.

• The configuration described in the equipment database is shared by all the
LDCs in the system, therefore all the equipments used in each of the LDCs must
be declared there. A readout program has to be linked to the equipmentList
library. It is possible to declare in the equipment database equipments, for
which the handling code is not provided. The readout program will abort the
run during the Arm phase, only if missing LDCs are selected as active. The
advantage is to build a readout program containing only the equipments that
will be used in the target LDC, whereas the equipment configuration file can
still contain more equipments than the ones encoded in the readout program.

• Parameters that can be passed to the equipment routines. The parameter
declarations in equipment database and the source code file must match. The
handling of these equipment parameters is explained in Section 6.4.2.

The DATE package readList contains four suites of equipment software: TEST,
CTP, DDL and UDP. Only one of these suites will be present in any LDC. Users can
add their own specific equipment software in one of these suites or create a new
one. With the aid of the TEST suite, software simulated events are produced mostly
for testing purpose.

The DDL suite contains all the equipment software to handle the RORC readout
(see Section 7.1). The CTP suite is an equipment developed for the ALICE trigger
system to read out information sent by the Central Trigger System (CTP). The UDP
ALICE DAQ and ECS manual

118 The readout program
�

suite contains all the equipment software to handle the UDP readout (see
Section 7.3). To each equipment suite belongs the source code file for the equipment
routines and the associated GNUmakefile. A summary is given in Table 6.1.

 6.1 Equipment suites in the readList packageTable

equipment suite components

TEST
equipmentList_TEST.c
GNUmakefile_TEST

CTP
equipmentList_CTP.c
GNUmakefile_CTP

DDL
equipmentList_DDL.c/.h
GNUmakefile_DDL

UDP
equipmentList_UPD.c/.h
GNUmakefile_UDP

As an example, to prepare a readout program for the TEST suite by using the
generic readList, see “How to prepare a readout program” in the ALICE DAQ
WIKI.

The equipment configuration may be changed between runs just by modifying the
equipment database. Changes are taken into account only at the next start of run. If
the modifications concern only the descriptive parts of the equipment, such as:

• adding or removing equipments assigned to an LDC;

• activating or deactivating equipments assigned to an LDC;

• changing the value of an equipment parameter.

Then the readout program does not need to be re-built. However, the readout
program must be re-build if the modifications in the equipment configuration (e.g.
adding equipment parameters) entail changes in the source code files.

6.4 The equipmentList library

This section provides the synopsis, the parameter handling and the functional
references of the five equipment routines that are required for each equipment in
the equipmentList library. The user has to provide these routines that are
specific to a readout electronics setup. Examples of these routines can be found in
the source code files of the four equipment suites, as shown in Table 6.1.

6.4.1 Synopsis of the equipment routines

The synopsis of the routines ArmNNN, AsynchReadNNN, EventArrivedNNN,
ReadEventNNN, and DisArmNNN for an equipment of type NNN is given below. All
five routines must be provided for an equipment, even if some of them are empty.
ALICE DAQ and ECS manual

The equipmentList library 119
Upon return from these routines the readout process checks the content of the
global variable readList_error, whose value allows signaling error conditions.
If its value is different from 0, the readout process logs an error message containing
the value of the variable and the name of the routine originating the error through
the global variable readList_errorSource (which is filled by the generic
readList module), and asks to stop the run.

ArmNNN

Synopsis #include “rcShm.h”
#include “event.h”
#include “readList_equipment.h”

void ArmNNN(char *par)

Description The ArmNNN routine is called by ArmHw at each start of run for equipment type NNN,
after the execution of the start of run scripts and before the transfer of the start of
run files on the output medium. This equipment routine should perform all the
actions needed at the beginning of the run, e.g. the initialization of the hardware
and of the trigger, or the assignment of values to global static variables. The routine
cannot generate any data.

Parameters:

• The parameter par is a pointer to a memory region containing the sequence of
pointers to the values of the parameters of the component being armed; these
values are read at run time from the equipment database and are assigned to
the equipment before arming the LDC.

Returns The routine does not return any value. The global variable readList_error
should be used to signal error conditions, which will provoke the log of a message
and the termination of the run.

AsynchReadNNN

Synopsis #include “rcShm.h”
#include “event.h”
#include “readList_equipment.h”

void AsyncReadNNN(char *par)

Description The AsynchReadNNN routine is always called by AsynchRead in the main event
loop (see Figure 6.1) for equipment type NNN. It is called in a strictly closed loop
without sleeping just before the EventArrivedNNN routine. Since this equipment
routine is invoked before the ReadEventNNN routine, it offers the possibility to
perform the readout of hardware that produces an asynchronous data flow.
However, it cannot pass any data to readout. Only the routine ReadEventNNN is
designed for this purpose. If this feature is not needed, this routine should be left
empty.
ALICE DAQ and ECS manual

120 The readout program
�

Parameters:

• The parameter par is a pointer to a memory region containing the sequence of
pointers to the values of the parameters of the component being armed; these
values are read at run time from the equipment database and are assigned to
the equipment before arming the LDC.

Returns The routine does not return any value. The global variable readList_error
should be used to signal error conditions, which will provoke the log of a message
and the termination of the run.

EventArrivedNNN

Synopsis #include “rcShm.h”
#include “event.h”
#include “readList_equipment.h”

int EventArrivedNNN(char *par)

Description The EventArrivedNNN routine is called by EventArrived in the main event
loop (see Figure 6.1) only if the TRIGGER attribute is assigned to this equipment
type NNN. It is called in a strictly closed loop without sleeping just after the
AsynchReadNNN routine. The purpose of this routine is to indicate whether a
trigger has occurred or not. This can be done either by polling and returning
immediately (with 0 if no trigger has occurred) or by waiting for an interrupt with
an appropriate driver call for the hardware.

Parameters:

• The parameter par is a pointer to a memory region containing the sequence of
pointers to the values of the parameters of the component being armed; these
values are read at run time from the equipment database and are assigned to
the equipment before arming the LDC.

Returns The function must return the value 1 if a new event has arrived, or 0 otherwise. The
global variable readList_error should be used to signal error conditions, which
will provoke the log of a message and the termination of the run.

ReadEventNNN

Synopsis #include “rcShm.h”
#include “event.h”
#include “readList_equipment.h”

int ReadEventNNN(char *par,
 struct eventHeaderStruct *ev_header,
 struct equipmentHeaderStruct *eq_header,
 int *data)
ALICE DAQ and ECS manual

The equipmentList library 121
Description The ReadEventNNN routine is always called by ReadEvent in the main event loop
(see Figure 6.1) for equipment type NNN after a trigger has arrived. This equipment
routine is the place to make the data available to the readout and to fill the fields in
the base event and equipment headers.

Parameters:

• The parameter par is a pointer to a memory region containing the sequence of
pointers to the values of the parameters of the component being armed; these
values are read at run time from the equipment database and are assigned to
the equipment before arming the LDC.

• The parameter ev_header is a pointer to the base event header (see Chapter 3),
which is defined in the ${DATE_COMMON_DEFS}/event.h header file.

• The parameter eq_header is a pointer to the equipment header (see
Chapter 3), which is defined in the ${DATE_COMMON_DEFS}/event.h header
file. This pointer is only valid (i.e. different from NULL) if the attribute
GENDATA is assigned to this equipment type in the declaration part of the
equipment database.

• The parameter data is a pointer to the raw data block to fill in. This pointer is
only valid (i.e. different from NULL) if the attribute GENDATA is assigned to this
equipment type in the declaration part of the equipment database. If this
equipment is designed for streamlined events (LDC run parameter Paged
data flag is 0), then the data must be copied to the memory where parameter
data is pointing. If this equipment is designed for paged events (LDC run
parameter Paged data flag is 1), then the equipment vector (see Chapter 3)
needs to be placed where parameter data is pointing.

The main readout program sets the variable readList_bufferSize to the value
of the available space for the data of the current equipment. The ReadEventNNN
routine is supposed to use this value in order to prevent writing beyond the space
available. This variable is accessible by making the following declaration:

extern int readList_bufferSize;

If streamlined events, the value of the variable readList_bufferSize is given
by the LDC run parameter Max. event size (see Chapter 2) minus the size of
the base event and the equipment header. For paged events, the value of the
variable readList_bufferSize is given by the size of the first level vector
minus the size of the equipment header. After calling the ReadEventNNN routine,
the new value of the variable readList_bufferSize is calculated (both for
streamlined or paged events) by the generic readList module. If the value
becomes negative (i.e. overflow) the following error is provoked: the variable
readList_error is set to 15 and the variable readList_errorSource is set to
the string “ReadEvent equipment N overflow”, where N is the ordinal number of
the faulty equipment. N is obtained by counting the active equipments only. The
run will then be aborted.

The ReadEventNNN routine is supposed to fill the fields in the base event and in
the equipment headers. Refer to Chapter for a detailed description of them and
how to access them with the help of macros. The most important header fields are:

• eventId in the base header: it is mandatory, except for END_OF_BURST events.
This variable is the event number in the run, where both the COLLIDER mode
or the FIXED TARGET mode are encoded, see Section 3.4. It must always
ALICE DAQ and ECS manual

122 The readout program
�

increase during a run, but it allows for gaps. The readout process checks that
the value of this field is non-zero and increasing for consecutive events inside a
run for events of the type PHYSICS_EVENT and CALIBRATION, and asks to
stop the run if not. This field must be the same in all the sub-events of the same
event, since it is used by the event builder to perform consistency checks. This
field should be set to 0 for START_OF_BURST events, while for END_OF_BURST
events this field is overwritten by the readout process which sets it to the last
event number held in the header of the last physics event in the burst.

• eventType in the base header: it is mandatory and initialized to the type
PHYSICS_EVENT. This variable marks the type of record. The readout process
increments the trigger number only for the PHYSICS_EVENT type of record and
not for other types of records.

• eventTypeAttribute in the base header: it is optional and initialized to 0.
This variable contains the system-defined attributes and the user-defined
attribute associated to an event.

• eventTriggerPattern in the base header: it is optional and initialized to 0.
This variable contains the level 2 trigger pattern.

• eventDetectorPatttern in the base header: it is optional and initialized to
0. This variable contains the level 2 detector pattern.

• equipmentId in the equipment header: it is optional and initialized to 0. It is
set by an equipment parameter to distinguish between equipments of the same
type.

• equipmentBasicElementSize in the equipment header: it is optional and
initialized to 0. Usually it is set to 4 bytes.

• equipmentTypeAttribute in the equipment header: it is optional and
initialized to 0. This variable contains user-defined attribute associated to an
equipment.

Upon return from this routine, the main readout program checks that the user has
filled the mandatory fields in the event header and updates some variables used in
the runControl status display.

Returns If the equipment produces data (i.e. the attribute GENDATA is assigned to this
equipment type), the routine must return the number of bytes actually taken. This
rule applies to both streamlined and paged events. If the equipment does not
produce data (i.e. attribute GENDATA is omitted to this equipment type), the routine
should return 0. The global variable readList_error should be used to signal
error conditions, which will provoke the log of a message and the termination of
the run.

DisArmNNN

Synopsis #include “rcShm.h”
#include “event.h”
#include “readList_equipment.h”

void DisArmNNN(char *par)
ALICE DAQ and ECS manual

The equipmentList library 123
Description The DisArmNNN routine is always called by DisArmHw at each end of run for
equipment type NNN, after the execution of the end of run scripts and before the
transfer of the end of run files on the output medium. This equipment routine
should perform all the actions needed at end of run, such as the release of unused
memory, the switching off of high voltages, or the saving of error statistics that may
have been collected.

Parameters:

• The parameter par is a pointer to a memory region containing the sequence of
pointers to the values of the parameters of the component being armed; these
values are read at run time from the equipment database and are assigned to
the equipment before arming the LDC.

Returns The routine does not return any value. The global variable readList_error
should be used to signal error conditions, which will provoke the log of a message
and the termination of the run.

6.4.2 Accessing the parameters

The equipment routines have access to the following parameters:

• Equipment parameters are specific to an equipment type. They are accessible
via a pointer received as first parameter in the routine call:

char *par;

• Global parameters can be used by all equipments. They are accessible via a
global pointer:

char *globPar;

The order, type and format of these parameters is a matter of convention.
Coherence must be assured between what is specified in the equipment database
and the source code file. No check is performed by readList before calling the
library.

The values of the equipment parameters are copied into memory at run time while
reading the equipment database configuration by following this convention on
their formats.

To ease the use of the parameters it is suggested to cast their memory pointer into a
pointer to a structure with proper fields, according to the declaration in the
equipment database.

Listing 6.1 shows a skeleton of a source code file for the routines of equipment type
Rand (lines 1-21). This is a simple equipment for testing purposes in the TEST suite.
Important is the way how the parameters are declared as pointers in a C typedef
(lines 2-7), casted to a local pointer (line 10) and eventually accessed (line 11).
ALICE DAQ and ECS manual

124 The readout program
�

6.4.3 The function references

In order to make the functions contained in the library accessible from the generic
readList, references to them must be created in the library through an array and a
macro defined into the readList_equipment.h header file. Independent of their
equipment attributes, the reference to their routines has to be made as follows:

1. The value returned applying the EQUIPMENTDESCR macro to the name of each
equipment type must be put into the equipmentDescrTable array. The order
is not important.

2. The variable nbEquipDescr must be set to the number of entries in the
equipmentDescrTable array.

Listing 6.1 (lines 23-27) shows an example on how to make the function references
of the sketched above equipment type Rand.

 6.1 Example of an equipment source code fileListing

1: /******************** equipment Rand *********************/
2: typedef struct {
3: long32 *eventMinSizePtr;
4: long32 *eventMaxSizePtr;
5: short *eqIdPtr;
6: short *triggerPattern;
7: } RandParType;
8:
9: void ArmRand(char *parPtr) {
10: RandParType *randPar = (RandParType *)parPtr
11: printf("Arming random generator (id = %hd)” \

 with min = %ld max = %ld triggerPattern = %d\n",
 *randPar->eqIdPtr,
 *randPar->eventMinSizePtr,*randPar->eventMaxSizePtr,
 *randPar->triggerPattern);

12: ... }
13:
14: void DisArmRand(char *parPtr) {}
15:
16: void AsynchReadRand(char *parPtr) {}
17:
18: int ReadEventRand(char *parPtr,

 struct eventHeaderStruct *header_ptr,
 struct equipmentHeaderStruct *eq_header_ptr,
 int *data_ptr) {

19: ... }
20:
21: int EventArrivedRand(char *parPtr) {}
22:
23: /****************** table of functions *******************/
24: equipmentDescrType equipmentDescrTable[] = {
25: EQUIPMENTDESCR(Rand)
26: };
27: int nbEquipDescr =

 sizeof(equipmentDescrTable) / sizeof(equipmentDescrTable[0]);
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
7
The RORC
readout
software

This chapter describes the DATE readout software for:

• the RORC (Read-Out Receiver Card) which is the interface between the DDL
(Detector Data Link) and the LDC.

• The Ethernet port which can be used by DATE as alternative data source.

Information on the implementation of the two equipments can be found in the
following Sections:

7.1 Introduction to the RORC equipment 126

7.2 Internals of the RORC equipment 127

7.3 Introduction to the UDP equipment 145

7.4 Internals of the UDP equipment 145

126 The RORC readout software
�

7.1 Introduction to the RORC equipment

The Read-Out Receiver Card (RORC) is a PCI master card that provides an
interface between the Detector Data Link (DDL) and the PCI, PCI-X or PCI
Express bus of a commodity PC. The DDL consists of a Source Interface Unit
(SIU), which is attached to the front-end electronics inside the detector and a
Destination Interface Unit (DIU). The SIU and the DIU are connected
through a pair of optical fibres to transmit data up to a rate of 200 MB/s. Five types
of RORCs have been designed:

• The pRORC has a 32 bit/33 MHz PCI bus interface and handles one DDL
channel using a piggy-backed DIU.

• The single channel D-RORC has a 64 bit/64 MHz PCI bus interface and handles
one DDL channel via a piggy-backed DIU.

• The dual channel D-RORC has a 64 bit/64 MHz PCI bus interface and handles
two DDL channels with embedded DIUs.

• The dual channel D-RORC has a 64 bit/100 MHz PCI-X bus interface and
handles two DDL channels with embedded DIUs.

• The dual channel D-RORC has a x8 PCI Express (Gen. 2) bus interface and
handles two DDL channels with embedded DIUs.

In this chapter, these cards are commonly referred as RORC, since they do not differ
from the software point of view. Depending on the acquisition needs and on the
number of available PCI bus slots, one PC can be equipped with several RORCs (up
to 6). Each RORC has a revision number and a unique serial number in its
configuration EPROM. The RORC can generate pre-defined data streams for testing
purposes. Dual channel RORC’s can be switched to “splitter mode”: data arriving
in one channel is sent out on the other channel in automatic way.

The data flow from the DIU to the PC memory is driven by the DMA engine of the
RORC firmware in co-operation with the RORC readout software. During one
DMA, only one data page can be written. Data pages that belong to the same
sub-event are referred as fragment, which is transferred over the DDL by one or
more DDL blocks. Each block can be up to 4x(2^19-1) = 2097148 bytes. For a
comprehensive description of the DDL and the RORC see the Web site
http://cern.ch/ddl. The stand-alone utility programs for the RORC are
documented in Chapter 20.

DATE provides all the necessary readout software to operate RORC devices on a
PC running Linux via the two following packages:

• Package rorc: it contains the Linux driver module, the library functions, and
some utility programs to have an interface to a RORC device. This package is
self-contained in the ${DATE_ROOT}/rorc directory.

• Package readList: it contains the equipment software to realize a readout
program for an LDC with a RORC device. The software is located in the
${DATE_ROOT}/readList directory and depends on package rorc.
ALICE DAQ and ECS manual

Internals of the RORC equipment 127
7.2 Internals of the RORC equipment

The goal of RORC readout software is to operate several RORC devices attached to
one LDC by considering the asynchronous data flow and the scattered location of
data pages in the main memory. Moreover, the RORC readout software has to be
structured in equipment routines as explained in Chapter 6. The rest of this chapter
presents the internals of the RORC equipment software, which explains in more
details the mechanism to transfer data with a RORC device (see Section 7.2.2), the
software elements to handle it (see Section 7.2.3), the data flow for multiple RORC
devices active in the LDC (see Section 7.2.4), and the pseudo code of the RORC
equipment routines (see Section 7.2.6).

7.2.1 Event Identification

The identification of the sub-event is given by the eventId field in its base event
header. The RorcData equipment writes this field by taking into account the two
common run parameters Collider mode and Common Data Header Present
(see the ALICE DAQ WIKI). Their usage is illustrated in Figure 7.1.

If the raw data contains the Common Data Header (see Section 3.9) with the
cdhEvent1 field (12 bit bunch-crossing number) and the cdhEvent2 field (24 bit
orbit number), then both Collider mode and Common Data Header Present
should be set. This case is depicted in the upper half of Figure 7.1. Setting the
parameter Common Data Header Present instructs the software to extract these
Common Data Header fields and to use them for filling the eventId field (orbit
counter and bunch-crossing counter part). Setting the parameter
Collider mode ensures that the eventId field is decoded in COLLIDER mode
(see Section 3.4). The 28 bit period counter of the COLLIDER mode
identification is incremented by software, whenever the orbit number wraps. Not
setting the parameter Collider mode in this scenario leads to an unsuitable event
identification. If several fragments need to be assembled to one sub-event, then the
RorcData equipment executes consistency checks among the Common Data
Header fields of their fragments.

If the raw data does not contain the Common Data Header, then none of the
common run parameters Collider mode and Common Data Header Present
should be set. This case is depicted in the lower half of Figure 7.1. When the
parameter Common Data Header Present is not set, then the identification is
done by the run-time variable Number of triggers. This is a 32 bit software
counter, which is incremented for each arrived sub-event. It is used to set the
eventId field (number in run part) when decoded in FIXED TARGET mode
(see Section 3.4). Therefore parameter Collider mode should be not set in this
scenario to avoid an incorrect event identification.
ALICE DAQ and ECS manual

128 The RORC readout software
�

 7.1 Event identification mechanism of the RorcData equipment.Figure

Collider mode

Collider mode

period counter

number in run

= 1

= 0

bc counter

number in burst

orbit counter

burst nb

cdhEventId2
(24 bit)

cdhEventId1
(12 bit)

Common Data Header Present = 1

Number of triggers
(32 bit)

= 0Common Data Header Present

software counter

Common Data Header

eventId

7.2.2 Data transfer mechanism of the RORC device

The mechanism to transfer data from the DDL to the PC memory by one RORC
device involves three activities that may run in parallel:

1. Fill: a process using the RORC has to fill the rorcFreeFifo with references
to free data pages to which the data stream from the DDL has to be transferred.
The rorcFreeFifo is located in the firmware of the RORC and has 128
entries. Each entry consists of three fields: the physical start address (32 or 64
bits according to the address mode) of the data page, the size (24 bits) in words
(= 4 bytes) of the data page, and the index (8 bits) of the rorcReadyFifo
holding information about the data transfer. In fact, the index field is part of the
physical address (bit 3 to 10) of an rorcReadyFifo entry. The latter FIFO is
further described in the part for activity Transfer and Scan.

2. Transfer: the RORC transfers data from the DDL to the data page addressed
by the top entry of the rorcFreeFifo. This can only take place if there is data
arriving from the DDL and if the rorcFreeFifo is not empty. When the data
transfer is completed, the RORC fills the rorcReadyFifo with information
about the transfer. The rorcReadyFifo is located in the memory of the PC
(the RORC needs to know the physical start address of it) and has also 128
entries. The RORC writes to the corresponding entry of the rorcReadyFifo,
which is determined by the index field of the top entry of the rorcFreeFifo.
Each entry consists of two fields: the length (32 bits) in words of the transferred
data, and the transfer status (32 bits). The status field can either be a DTSTW
(Data Transmission Status Word) or 0 if more pages are about to follow. A
DTSTW marks the end of a DDL block (to allow fragments larger than 2 MB
there can be several DDL blocks) or the end of a fragment. For all cases the
status field also contains an error bit to indicate a transfer problem. Whenever a
free data page with a particular index is given to the RORC during a fill activity,
the status field of this indexed rorcReadyFifo entry has to be initialized to -1.

3. Scan: a process using the RORC needs to scan the rorcReadyFifo entries in
ALICE DAQ and ECS manual

Internals of the RORC equipment 129
order to find out if there are fragments ready in one or more pages. By looking
up the status fields, a sequence can be obtained such as "0 0 0 DTSTW DTSTW
0 DTSTW 0 0 0 -1 -1". In this example there are 3 fragments ready (the first
one consists of 4 pages, the second of 1 page, and the third of 2 pages) and one
fragment is arriving but not finished. To simplify the scan activity, these entries
are in increasing order with a wrap-around at 128.

7.2.3 Elements to handle the RORC device

Based on the mechanism to transfer data with the RORC device, Figure 7.2 shows
the software elements to handle it. They represent the main data structures of the
readout software for the RORC device:
ALICE DAQ and ECS manual

130 The RORC readout software
�

 7.2 The software elements to handle the RORC device.Figure

<− nextFragmentInIdx

<− nextPageInFragmentIdx

0:

1:

2:

RORC_READY_FIFO_
MAX_SIZE:

length
(32 bits)

status
(32 bits)

page address (32 bits)
page size (24 bits)
page index (8 bits) page status (32 bits)

page length (32 bits)
writes to the page index:

0:

1:

2:

FRAGMENT_READY_FIFO_
MAX_SIZE:

(32 bits)
bankId

(32 bits)
bankOffset

(32 bits)
InFragment
nbOfPages

(32 bits)
DataSize
fragment

(32 bits)
rorcStatus

0:

FRAGMENT_VECTOR_
MAX_SIZE:

eventVector eventVector eventVectoreventVector
StartOffset PointsToVector

(16 bits) (16 bits)
BankId

(32 bits)
Size
(32 bits)

<− nextPageInIdx

<− nextPageOutIdx

<− nextFragmentOutIdx

0:

1:

2:

MAX_SIZE:
offset
(32 bits)

RORC_READY_FIFO_

FragmentReadyFifo

FragmentVector(s)

DDL

RORC

rorcReadyFifororcPageOffsetFifo

1. rorcPageOffsetFifo: it is used to remember the bank offset of a free page
given to the RORC during a fill activity, since this information is missing when
the RORC has finished the transfer and is needed to find the location of the data
page during a scan activity. The rorcPageOffsetFifo has up to 128 entries,
where each entry holds the offset (32 bits) within the bank where the free data
page is located. The handling is done by the indices nextPageInIdx and
ALICE DAQ and ECS manual

Internals of the RORC equipment 131
nextPageOutIdx, which are further explained in the rorcReadyFifo
description.

2. rorcReadyFifo: it is used by the RORC during a transfer activity to store
information about the completed data transfer(s), and during a Scan activity to
retrieve the written data pages belonging to a fragment. As already pointed out
in Section 7.2.2, the rorcReadyFifo has up to 128 entries, where each entry
consists of the length field (32 bits) and the transfer status field (32 bits). The
RORC needs to know the physical start address of the rorcReadyFifo. To
operate this FIFO, two indices nextPageInIdx and nextPageOutIdx and a
flag rorcReadyFifoFull are used (see Section 7.2.6). The index
nextPageInIdx always points to the entry where the RORC device will make
a notification about its next completed data transfer. This index is advanced
(wrap-around at 128) only during a scan activity. The index nextPageOutIdx
always points to the entry that determines the next free data page for the fill
activity. Only during the fill activity the index nextPageOutIdx can be
advanced (wrap-around at 128), but it must not overtake the index
nextPageInIdx. At initialization the RORC is filled with 128 free pages and if
no data page has arrived so far, all entries in the rorcReadyFifo have -1 in
their status field, the index nextPageInIdx is equal to index
nextPageOutIdx, and the flag rorcReadyFifoFull is TRUE. During the
scan, the status field is read at index nextPageInIdx. If a page has arrived, the
status field has turned to 0 or to a DTSTW, and the index nextPageInIdx can
be advanced until a status field of -1 is hit. At the same time the RORC can be
filled with new free pages, whose indices are taken by advancing the index
nextPageOutIdx up to nextPageInIdx. If the filling of new pages fails (e.g.
allocation of pages not possible) over a longer period, it may happen that
nextPageOutIdx reaches nextPageInIdx after wrapping around and the
flag rorcReadyFifoFull is FALSE. In this condition the rorcReadyFifo is
empty and the data transfer cannot continue, since there are no free pages in the
rorcFreeFifo.

3. FragmentVector(s): they are used to link together the data pages of one
fragment transferred by the RORC. The FragmentVector will become the 2nd
level vectors in the event tree (see Figure 7.3). During the Scan activity the status
field is read of the rorcReadyFifo entries. For each complete fragment (status
fields form a sequence of zeros, interspersed DTSTWs for DDL blocks, and a
terminating DTSTW), a FragmentVector will be produced, where each entry
represents one data page. An entry has four fields: the eventVectorBankId
field (16 bits) and the eventVectorStartOffset field (32 bits) of a data
page, the eventVectorSize field (32 bits) in bytes of the data block within the
page, and the eventVectorPointsToVector field (16 bits) to indicate that
the pair <bank id, bank offset> points directly to a data page and not to another
vector. All this information is obtained from the rorcReadyFifo in
conjunction with the rorcPageOffsetFifo. Moreover, the filling is assisted
by an index nextPageInFragmentIdx. The parameter
FRAGMENT_VECTOR_MAX_SIZE gives the maximum number of data pages per
fragment, which must be known in advance for the allocation.

4. FragmentReadyFifo: it is used to queue the fragments transferred by the
RORC. Given that one LDC can host more than one RORC, the appropriate
fragments from each RORC device need to be built together in a sub-event
before any further processing. Since the delivery rate of fragments may differ
between the RORCs, the FragmentReadyFifo is designed to buffer these
fragments. The parameter FRAGMENT_READY_FIFO_MAX_SIZE gives the
ALICE DAQ and ECS manual

132 The RORC readout software
�

maximum number of entries, where each entry has 5 fields: the bankId field
(32 bits) and the bankOffset field (32 bits) to locate the FragmentVector,
the nbOfPagesInFragment field (32 bits) to know the number of entries in
the FragmentVector, the fragmentDataSize field (32 bit) to know the size
in bytes of the fragment, and the rorcStatus field (32 bit) to store the DTSTW
(the last one terminating the fragment). To operate this FragmentReadyFifo
the two indices nextFragmentInIdx and nextFragmentOutIdx and the
flag fragmentFifoFull are used in a simple way (see Section 7.2.6). An entry
is made into the FragmentReadyFifo whenever one complete fragment has
been found during the scan activity. All the fields in the FragmentReadyFifo
entry can be filled by exploiting the current FragmentVector and the entry of
the rorcReadyFifo status field. When a sub-event is being built, an entry is
taken out from FragmentReadyFifo.

5. Data page(s): They contain the raw data delivered by the RORC. For
simplicity they are not shown in Figure 7.2. A data page goes through the
following cycle: during the Fill activity it is allocated from buffer readoutData
and given to the RORC, held by the rorcFreeFifo and waiting to be filled by
the RORC; during the Transfer activity it is written by the RORC, held by the
rorcReadyFifo and waiting to be scanned as ready (status 0 or a DTSTW).
During the Scan activity it is attached to a FragmentVector and a complete
fragment is carried along with the FragmentReadyFifo. During sub-event
building it is transferred to the readoutReadyFifo, processed and
de-allocated by the recorder process (see Section 10.3). As a matter of fact,
there is no memory-to-memory copy of data pages in this scheme.

7.2.4 Equipments to handle the RORC device

The RORC readout software is implemented by three equipment types in the DDL
equipment suite which are provided in the package readList (see Chapter 6):

1. RorcData is responsible for initializing the RORC and handling the
autonomously delivered data pages from the RORC. One such equipment
needs to be instantiated for each DDL channel in an LDC. It has the attribute
GENDATA and can be configured by several parameters (see Section 7.2.4.1).

2. RorcTrigger is responsible for indicating the availability of a sub-event,
where each DDL channel contributes a fragment. One equipment for each LDC
needs to be instantiated. It has the attribute TRIGGER and can be configured by
one parameter (see Section 7.2.4.2).

3. RorcSplitter enables a dual channel D-RORC to work in “split mode”. It
does not have any attribute and can be configured by parameters (see
Section 7.2.4.3).

The first one, RorcData, has the attribute GENDATA and is in charge of reading the
data from one RORC channel. The second one, RorcTrigger, has the attribute
TRIGGER and is used for triggering one or more RORC channel(s). Their pseudo
code is given in Section 7.2.6.

The equipment routines are participating in the construction of a sub-event in
paged mode (see Chapter 3), as shown in Figure 7.3. The sub-event is described by
a 1st level vector, which is composed of the base header and three equipments; each
of the equipments is represented by an equipment header and an equipment vector.
The equipment vector of the first equipment points via a pair <bank id, bank
ALICE DAQ and ECS manual

Internals of the RORC equipment 133
offset> to a 2nd level vector, which is composed of three payload vectors in
sequence. Each vector points again via a pair <bank id, bank offset> to one data
page. The equipment vector of the second equipment points to a 2nd level vector
with two payload vectors. The equipment vector of the third equipment points
directly via a pair <bank id, bank offset> to one data page. As an option, an
equipment vector may always point to a 2nd level vector, even if it contains only
one payload vector.

 7.3Figure Example of one sub-event in paged event mode.

header
base

header vector header headervector vector

vector vector vector vector vector
payload payload payload payload payload

equipment

<bank id,
bank offset>

<bank id,
bank offset>

equipment equipment equipment equipment equipment
1st level vectors

2nd level vectors
(fragment vectors)

data pages in
memory bank(s)

equipment 1 equipment 2 equipment 3

The equipment RorcSplitter controls the feature on a dual channel D-RORC to
duplicate the data stream from an incoming channel to an outgoing channel. It does
not carry any attribute, since it does neither generate data nor functions as a trigger.
In order to enable this feature, the run options HLT checkbutton (see the ALICE
DAQ WIKI) must be set.

7.2.4.1 Equipment RorcData

The equipment routines of RorcData for reading out data from one RORC channel
are the following:

1. ArmRorcData(): it checks equipment parameters and logs a message.
Allocates and initializes the rorcPageOffsetFifo, the rorcReadyFifo,
and the FragmentReadyFifo. It resets and starts the RORC device.

2. AsynchReadRorcData(): it tries to fill the rorcFreeFifo with free pages. It
scans the rorcReadyFifo to determine if data pages have arrived from the
RORC device. If the status field of a data page has 0 or a DTSTW that terminates
a DDL block, then this page will be added to the FragmentVector, which will
be allocated if it is the first page of a fragment. If the status field of a data page
has a DTSTW that terminates a fragment, then this page will be added to the
FragmentVector as well, and the FragmentVector will be put into the
FragmentReadyFifo. For triggering purpose (see Section 7.2.4.2), the global
flag allFragmentsReadyFlag will be set to FALSE if the
FragmentReadyFifo is empty.

3. EventArrivedRorcData(): this routine is empty.
ALICE DAQ and ECS manual

134 The RORC readout software
�

4. ReadEventRorcData(): it takes out a fragment from the
FragmentReadyFifo and uses it to fill the equipment header and equipment
vector of the 1st level vector.

5. DisArmRorcData(): it stops the RORC device and deallocates all memory
blocks.

7.2.4.2 Equipment RorcTrigger

The equipment routines of RorcTrigger are used for triggering the RORC
devices. The global flag allFragmentsReadyFlag is used as trigger mechanism.
This flag is set to TRUE at the beginning of each iteration of the inner data-taking
loop, and set to FALSE if FragmentReadyFifo is empty. Hence, if there is at least
one fragment in each FragmentReadyFifo, the value of this flag remains TRUE
(“trigger arrived”). The routines are the following:

1. ArmRorcTrigger(): it checks the existence of memory banks, checks if the
rcShm flag Paged data flag is set, and logs a message.

2. AsynchReadRorcTrigger(): it sets the allFragmentsReadyFlag to
TRUE.

3. EventArrivedRorcTrigger(): it returns the value of
allFragmentsReadyFlag.

4. ReadEventRorcTrigger(): it initializes in the base event header the
eventId field (needed for CDH processing) and the eventTriggerPattern
field.

5. DisArmRorcTrigger(): this routine is empty.

7.2.4.3 Equipment RorcSplitter

The equipment routines of RorcSplitter are the following:

1. ArmRorcSplitter(): it enables the data splitting mode for the selected
channel. If configured via the parameters, it enables the flow control handling.

2. AsynchReadRorcSplitter(): this routine is empty.

3. EventArrivedRorcSplitter(): this routine is empty.

4. ReadEventRorcSplitter(): this routine is empty.

5. DisArmRorcSplitter(): it disables the data splitting mode for the selected
channel. It also disables the flow control handling.

7.2.4.4 Configuring the RorcData equipment

The various parameters for the equipment RorcData can be separated into two
groups, depending whether they are related to the payload or not. There is a choice
between four data sources:

• Equipment software (parameter dataSource = 1): events are generated by the
RORC equipments without any RORC hardware, thus only by software. In this
mode the DATE setup along with the readout program can be tested.

• RORC internal data generator (parameter dataSource = 2): events are
generated by the RORC internal data generator. In this mode the RORC can be
ALICE DAQ and ECS manual

Internals of the RORC equipment 135
tested stand-alone.

• Front-end emulator (parameter dataSource = 3): events are generated by the
front-end interface card (FEIC). Consult the Web at http://cern.ch/ddl for
the documentation about the FEIC. In this mode the RORC and the DDL chain
(SIU, optical fibers, DIU) can be fully tested.

• Detector electronics: (parameter dataSource = 0): events are generated by the
detector electronics. The complete DDL chain starting from the detector
electronics is in operation. This mode needs to be chosen for data taking.

Table 7.1 describes the RorcData equipment parameters that are not related to the
payload. The section about the internals of the RORC equipments (see Section 7.2)
helps understanding the meaning of these parameters. Typical values can be found
in Listing 7.5 (lines 37 and 39). To achieve optimal performance, the parameter
rorcReadyFifo should not exceed 128 and the size of the data pages (given by
the parameter rorcPageSize) should be at least the average size of a fragment.
The fragment size is limited by the number of pages per fragment (given by the
parameter fragmentVectorSize) times the page size. For example in Listing 7.5
(line 37) the maximum fragment size is 1024 * 100000 bytes.

 7.1 RorcData equipment parameters for all data sourcesTable

Parameter Description

eqId equipment id for the equipment header

rorcRevision 1 = pRORC
2 = single channel D-RORC
3 = dual channel D-RORC
4 = dual channel D-RORC with PCI-X interface
5 = dual channel D-RORC with PCI eXpress
interface

rorcSerialNb serial number of the RORC

rorcChannelNb 0 for the pRORC and single channel D-RORC
0 or 1 for the dual channel D-RORC

dataSource 0 = Detector electronics
1 = Equipment software
2 = RORC internal data generator
3 = FEIC

rorcPageSize data page size in bytes

rorcReadyFifoSize number of rorcReadyFifo entries

fragmentVectorSize maximum number of pages per fragment

fragmentReadyFifoSize number of fragmentReadyFifo entries

ctrlPtr for internal use (any value can be chosen)

readyFifoPtr for internal use (any value can be chosen)

The parameters of the RorcData equipment that are related to the payload are
described in the following tables. The parameters in Table 7.2 refer to the
equipment software as data source. At the moment only incremental data can be
generated in this mode and the parameters rorcRevision, rorcSerialNb, and
ALICE DAQ and ECS manual

136 The RORC readout software
�

rorcChannel have no meaning. The parameters in Table 7.3 refer to the RORC
internal data generator as data source, and the parameters in Table 7.4 refer to the
FEIC as data source. Common to these three modes is that an event counter
(starting at 1) is generated as the very first data word, which is counted in the
fragment size. Moreover, fragments have fixed data size in case the parameters
dataGenMinSize and dataGenMaxSize are equal, or random data size in case
these parameters are different. Finally, the parameters in Table 7.5 refer to the
detector electronics as data source.

 7.2 RorcData equipment parameters (equipment software)Table

Parameter Description

dataGenMinSize minimum event size in bytes:
• fixed/random: minimum is 4 bytes

dataGenMaxSize maximum event size in bytes:
• fixed/random

dataGenInitWord first incremental data word

dataGenPatternNo not in use since only incremental data with event
counter is generated (any value can be chosen)

dataGenSeed seed for random generator

expectedCdHVersion dummy (not checked)

consistencyCheckLevel 0 = no data checks
1 = first and last data word are checked
2 = all data words are checked

consistencyCheckPattern 5 = incremental data with event counter
8 = incremental data without event counter

Table 7.3 RorcData equipment parameters (RORC internal data generator)

Parameter Description

dataGenMinSize minimum event size in bytes:
• fixed: minimum is 4 bytes,
• random: no effect, always 4 bytes

dataGenMaxSize maximum event size in bytes:
• fixed: maximum is 2097152 bytes
• random: the value will be rounded to the next
lower power of 2, maximum is 2097152 bytes

dataGenInitWord first incremental/decremental data word,
constant or alternating data word

dataGenPatternNo 1 = constant data
2 = alternating pattern
3 = flying 0
4 = flying 1
5 = incremental data
6 = decremental data
7 = random data

dataGenSeed seed for random generator
ALICE DAQ and ECS manual

Internals of the RORC equipment 137
expectedCdHVersion dummy (not checked)

consistencyCheckLevel 0 = no data checks
1 = first and last data word are checked
2 = all data words are checked

consistencyCheckPattern 5 = incremental data with event counter
8 = incremental data without event counter

 7.4Table RorcData equipment parameters (FEIC)

Parameter Description

dataGenMinSize minimum event size in bytes:
• fixed: minimum is 64 byte
• random: no effect, always 4 bytes

dataGenMaxSize maximum event size in bytes:
• fixed: the value will be rounded to the next
lower power of 2, maximum is 1073741824 bytes
• random: the value will be rounded to the next
lower power of 2, maximum is 1073741824 bytes

dataGenInitWord not in use since the first incremental data word is
always 0 (any value can be chosen)

dataGenPatternNo 1 = external pattern generator
2 = alternating pattern
3 = flying 0
4 = flying 1
5 = incremental data
6 = decremental data

dataGenSeed seed for random generator

expectedCdHVersion dummy (not checked)

consistencyCheckLevel 0 = no data checks
1 = first and last data word are checked
2 = all data words are checked

consistencyCheckPattern 5 = incremental data with event counter
8 = incremental data without event counter

Table 7.5 RorcData equipment parameters (detector electronics)

Parameter Description

dataGenMinSize not in use (any value can be chosen)

dataGenMaxSize not in use (any value can be chosen)

dataGenInitWord not in use (any value can be chosen)

dataGenPatternNo not in use (any value can be chosen)

Table 7.3 RorcData equipment parameters (RORC internal data generator)

Parameter Description
ALICE DAQ and ECS manual

138 The RORC readout software
�

There are several checks implemented in the RORC equipment software that are
always applied, for example the length and status of the each delivered data page
has to be correct (see Section 7.2). These checks are not related to the payload and if
no other checks are desired, the parameter consistencyCheckLevel must be 0.
However, consistency checks may be applied on payloads having a specific test
pattern, if the parameter consistencyCheckLevel is set to the value 1 or 2:

• If it is set to 1, the first and last data word of each page are checked against the
pattern given by parameter consistencyCheckPattern. A check of the first
data word (event counter) against the DAQ event counter is optional.

• If it is set to 2, all data words of each page are checked against the pattern given
by the parameter consistencyCheckPattern. A check of the first data word
(event counter) against the DAQ event counter is optional.

7.2.4.5 Configuring the RorcTrigger equipment

There is only one parameter for the equipment RorcTrigger, called
EvInterval. It allows to specify an additional delay interval in microseconds,
which can be useful for testing purposes. The default value is 0, as shown in
Listing 7.5 (lines 32-33).

7.2.4.6 Configuring the RorcSplitter equipment

A dual channel D-RORC can be used in “split mode”, where the data arriving over
the incoming channel is bit-by-bit copied to the other outgoing channel. The
parameters of the RorcSplitter equipment identify the outgoing channel
(number 0 or 1) and define how the data flow is handled. After a RORC reset, the
split mode is disabled. Table 7.6 describes the RorcSplitter parameters.

dataGenSeed not in use (any value can be chosen)

expectedCdHVersion version number of the CDH
(current version is 1)

consistencyCheckLevel 0 = no data checks (recommended)
1 = first and last data word are checked
2 = all data words are checked

consistencyCheckPattern 5 = incremental data with event counter
8 = incremental data without event counter

Table 7.5 RorcData equipment parameters (detector electronics)

Parameter Description

Table 7.6 RorcSplitter equipment parameters

Parameter Description

rorcSerialNb serial number of the RORC

rorcChannelNb 0 or 1 defining the outgoing channel
ALICE DAQ and ECS manual

Internals of the RORC equipment 139
7.2.5 Data flow for multiple RORC devices

One LDC can host more than one RORC device with one or two channels, in which
case the fragments from each channel need to be built together to constitute the
sub-event. Figure 7.4 shows the logical view for three devices to better understand
the asynchronous data flow with multiple RORCs in one LDC.

After initializing all elements, each AsynchReadRorcData() equipment routine
keeps one RORC channel going (Fill and Scan activity). If a complete fragment has
arrived, this routine puts the constructed FragmentVector, which points to the
attached data pages, into the specific FragmentReadyFifo. There is one of these
FIFOs for each RORC device in an LDC. If none of them is empty, in which case
equipment routine EventArrivedRorcTrigger() returns TRUE, one entry is
taken out from each FragmentReadyFifo and is assembled ina sub-event via the
ReadEventRorcData() routine. The result of this process is the 1st level vectors
of this sub-event. The bank id and offset of this 1st level vector is put into the
readoutReadyFifo. If the common run parameter Common Data Header
Present flag is set, there are additional consistency checks to verify whether the
assembled fragments belong to the same particles collision by analyzing their
CDHs (see Section 3.9).

rorcFlowControl 0 = the flow control from the receiving side
on the outgoing channel is ignored
1 = the flow control from the receiving side
on the outgoing channel is taken into account

ctrlPtr for internal use (any value can be chosen)

Table 7.6 RorcSplitter equipment parameters

Parameter Description
ALICE DAQ and ECS manual

140 The RORC readout software
�

 7.4 The data flow for an LDC with 3 RORC devicesFigure

RORC 1 RORC 3

re
ad

ou
tR

ea
dy

Fi
fo

data pages

1st level vector

2nd level vectors

Fr
ag

m
en

tR
ea

dy
Fi

fo
 3

FragmentVector

data pages

Fr
ag

m
en

tR
ea

dy
Fi

fo
 1

Fr
ag

m
en

tR
ea

dy
Fi

fo
 2

RORC 2

7.2.6 Pseudo code of the RORC equipment routines

The following section presents the pseudo code of the routines ArmRorcData(),
AsynchReadRorcData(), ReadEventRorcData(), DisArmRorcData(), and
for handling FIFOs by a single process. The actual code can be found in the
${DATE_ROOT}/readList/equipmentList_DDL.c file.

Listing 7.1 shows the pseudo code of the routine ArmRorcData(). It can be
divided in 3 parts. In the first part (line 1), the validity of the equipment parameters
(seeSection 7.2.4) is checked. In the second part, the data structures to handle one
RORC device are allocated (lines 2-4) and initialized (lines 5-10). As shown in
Figure 7.2, these are the rorcReadyFifo, the rorcPageOffsetFifo, and the
fragmentReadyFifo. They are allocated from the banks readoutData and
readoutFirstLevel. The indices of these FIFOs are all set to 0 and the flags to
FALSE. At this point of time, the contents of these data structures can be ignored. In
the third part, the RORC device is initialized (line 11) by calling the rorc library
functions rorcFind(), rorcOpen(), rorcReset(), rorcArmDDL(),
rorcStartTrigger(), rorcStartDataReceiver(), whose synopsis is given
on the Web site at http://cern.ch/ddl. In the function
rorcStartDataReceiver(), the physical address of the rorcReadyFifo is
given to the RORC. The filling with free data pages of the RORC is done by the
routine AsynchReadRorcData().
ALICE DAQ and ECS manual

Internals of the RORC equipment 141
 7.1Listing Pseudo code of equipment routine ArmRorcData()

1: check the equipment parameters
2: allocate a block for rorcReadyFifo from readoutData
3: allocate a block for rorcPageOffsetFifo from readoutFirstLevel
4: allocate a block for fragmentReadyFifo from readoutFirstLevel
5: nextPageInIdx = 0
6: nextPageOutIdx = 0
7: rorcReadyFifoFull = FALSE
8: nextFragmentInIdx = 0
9: nextFragmentOutIdx = 0
10: fragmentFifoFull = FALSE
11: call functions rorcFind(), rorcOpen(), rorcReset(), rorcArmDDL(),

rorcStartTrigger(), rorcStartDataReceiver()

Listing 7.2 shows the pseudo code of the routine AsynchReadRorcData(). Each
time this routine is entered, it tries to completely fill the RORC with free data pages
in the fill-loop (lines 1-14). This is important for the initialization, when this routine
is called the very first time. There are two conditions to exit the fill-loop, either
when the rorcReadyFifo is full with free data pages (lines 2-4) or the allocation
of a free data page was not successful (lines 11-13). In any of these cases the
execution can be continued, since allocations will be tried again in the next call. If
there are no problems with the allocation of a new data page (line 5), the
corresponding status field in the rorcReadyFifo is set to -1 (line 7), its bank offset
is stored in the rorcPageOffsetFifo (line 8), the data page is communicated to
the RORC (line 9) via the rorc library routine rorcPushFreeFifo(), and the
index nextPageInIdx is increased (line 10). After to the fill-loop, the scan-loop
(lines 15-55) checks the entries in the rorcReadyFifo to find out if the RORC has
transferred data pages. The scan always starts at the index nextPageOutIdx (line
19) and stops when a status field with -1 is hit (lines 20-22). Since at each
advancement of the index nextPageOutIdx (line 54) the former status field is set
to -1 (lines 53), it is assured that the scan-loop cannot be executed forever. In the
special case that the rorcReadyFifo is empty (lines 16-18), the scan-loop exits. If
the error bit is not set in the status field (lines 23-25), the raw data has been written
into this page by the RORC device. This page has to be added to the current
fragmentVector, which will be allocated (line 27) if this is the beginning of a new
fragment (line 26). The handling of a fragmentVector is assisted by the index
nextPageInFragmentIdx to know where the next page entry will be put, and by
a variable fragmentVectorDataSize to count the total number of bytes of this
fragment. Both are initialized to 0 (lines 28-29) when a new fragmentVector is
allocated. A written data page is put into the current fragmentVector by filling
its fields (lines 31-35), by advancing the index nextPageInFragmentIdx (line
36), and by increasing fragmentVectorDataSize (line 37). If the status field
indicates a DTSTW that terminates a DDL block (line 38), then only its length is
checked. If the status field indicates a DTSTW that terminates a fragment (line 41),
then some additional work is done. First the current fragmentVector and the last
data page of this fragment are resized (lines 42-43), since they might be larger as
needed. Then an entry is made for the current fragmentVector into the
fragmentReadyFifo by filling the fields (lines 44-49) and by advancing the index
nextFragmentInIdx (line 51). After exiting the scan-loop, the
fragmentReadyFifo is checked (line 56) for emptiness in which case the “trigger
arrived” condition is FALSE (line 57). The equipment RorcTrigger holds the
counterparts in the routine AsynchReadRorcTrigger() to initialize this
condition to TRUE, and in the routine EventArrivedRorcTrigger() to signal
this condition.
ALICE DAQ and ECS manual

142 The RORC readout software
�

Listing 7.3 shows the pseudo code of the routine ReadEventRorcData(). It takes
out the entry (pointer to a fragment) from the FragmentReadyFifo to which the
index nextFragmentOutIdx is pointing (lines 1), and it uses this fragment to fill
the equipment header fields (lines 2-7) and the equipment vector fields (lines 8-12).
These copying operations construct one equipment entry in the 1st level vector of
the sub-event. If the common run parameter Common Data Header Present
flag is set, then the CDH (see Section 7.2.5) of the fragment is processed (lines
13-24), in particular the eventId field of the base event header is filled. If the CDH
processing is switched off, then the software counter Number of triggers is
used for the event identification.

Listing 7.4 shows the pseudo code of the routine DisArmRorcData(). First the
RORC is stopped by calling the rorc library routines rorcStopTrigger(),
rorcStopDataReceiver() and rorcClose(), whose synopsis is given on the
Web site http://cern.ch/ddl. Then all the data structures are de-allocated in
the following order: pages in the rorcReadyFifo, pages in the
FragmentVector(s), the FragmentVector(s), the FragmentReadyFifo, the
rorcPageOffsetFifo, and the rorcReadyFifo.

Finally Listing 7.5 shows the pseudo code to handle a generic FIFO if only one
process is using it. Assuming the entries at index [0,...,maxIdx-1], it requires
two indices nextInIdx and nextOutIdx and a flag fifoFull to implement the
initalize/put/get primitives. This pseudo code applies to rorcReadyFifo and
fragmentReadyFifo.
ALICE DAQ and ECS manual

Internals of the RORC equipment 143
 7.2Listing Pseudo code of equipment routine AsynchReadRorcData()

1: begin of fill-loop
2: if(rorcReadyFifo is full)
3: break fill-loop
4: endif
5: allocate one data page from readoutData
6: if(allocation successful)
7: set status field to -1 in rorcReadyFifo[nextPageInIdx]
8: put bank offset in rorcPageOffsetFifo[nextPageInIdx]
9: call function rorcPushFreeFifo()

10: advance index nextPageInIdx
11: else
12: break fill-loop
13: endif
14: end of fill-loop
15: begin of scan-loop
16: if(rorcReadyFifo is empty)
17: break scan-loop
18: endif
19: status = status field in rorcReadyFifo[nextPageOutIdx]
20: if(status == -1)
21: break scan-loop
22: endif
23: if(status contains error bit)
24: report error and exit
25: endif
26: if(a new fragment)
27: allocate a fragmentVector from readoutSecondLevel
28: nextPageInFragmentIdx = 0
29: fragmentVectorDataSize = 0
30: endif
31: fill the fragmentVector[nextPageInFragmentIdx]
32: - eventVectorBankId field = readoutDataBank
33: - eventVectorPointsToVector field = FALSE
34: - eventVectorSize field from length field of

 rorcReadyFifo[nextPageOutIdx]
35: - eventVectorStartOffset field from

 rorcPageOffsetFifo[nextPageOutIdx]
36: advance index nextPageInFragmentIdx
37: increase fragmentVectorDataSize by the eventVectorSize field
38: if(status is a DTSTW terminating a DDL block)
39: check the length of the DDL block
40: endif
41: if(status is a DTSTW terminating a fragment)
42: resize the fragmentVector
43: resize the data page
44: put an entry into fragmentReadyFifo[nextFragmentInIdx]
45: - bankId field = readoutSecondLevelBank
46: - bankOffset field from the fragmentVector
47: - nbOfPagesInFragment field = nextPageInFragmentIdx
48: - fragmentDateSize field = fragmentVectorDataSize
49: - rorcStatus field from the status field of

 rorcReadyFifo[nextPageOutIdx]
50: update the DDL monitoring fields
51: advance index nextFragmentInIdx
52: endif
53: set status field to -1 in rorcReadyFifo[nextPageOutIdx]
54: advance index nextPageOutIdx
55: end of scan-loop
56: if(fragmentReadyFifo is empty)
57: allFragmentsReadyFlag = FALSE
58: endif
ALICE DAQ and ECS manual

144 The RORC readout software
�

 7.3Listing Pseudo code of equipment routine ReadEventRorcData()

1: get fragment from FragmentReadyFifo[nextFragmentOutIdx]
2: fill the equipment header
3: - equipmentSize from the fragmentDataSize field
4: - equipmentType from the equipment parameter
5: - equipmentId from the equipment parameter
6: - equipmentTypeAttribute from the rorcStatus field
7: - equipmentBasicElementSize in bytes
8: fill the equipment vector
9: - eventVectorBankId from the bankId field
10: - eventVectorPointsToVector = TRUE
11: - eventVectorSize from the nbOfPagesInFragment field
12: - eventVectorStartOffset from the bankOffset field
13: if(CDH processing)
14: - version number
15: - MBZ field
16: - block length
17: - status&error bits
18: - L1 trigger message
19: - event id
20: - mini event id
21: - block attributes
22: - trigger classes
23: - participating subdetectors
24: - ROI
25: else
26: - set the event id from software counter
27: endif

 7.4Listing Pseudo code of equipment routine DisArmRorcData()

1: stop the RORC by calling functions rorcStopTrigger(),
rorcStopDataReceiver(), rorcClose()

2: deallocate all data structures
3: - data pages in the rorcReadyFifo
4: - data pages in the FragmentVector(s)
5: - FragmentVector(s)
6: - FragmentReadyFifo
7: - rorcPageOffsetFifo
8: - rorcReadyFifo
ALICE DAQ and ECS manual

Introduction to the UDP equipment 145
 7.5 Pseudo code for handling a FIFO for a single processListing

1: // initializing the FIFO
2: nextInIdx = 0
3: nextOutIdx = 0
4: fifoFull = FALSE
5:
6: // putting an element into the FIFO
7: if(fifoFull)
8: error “FIFO is full”
9: else
10: put FIFO element at index nextInIdx
11: nextInIdx = nextInIdx + 1 MOD maxIdx
12: if(nextInIdx == nextOutIdx)
13: fifoFull = TRUE
14: endif
15: endif
16:
17: // getting an element from the FIFO
18: if(nextInIdx == nextOutIdx && NOT fifoFull)
19: error “FIFO is empty”
20: else
21: get FIFO element at index nextOutIdx
22: nextOutIdx = nextOutIdx + 1 MOD maxIdx
23: fifoFull = FALSE
24: endif

7.3 Introduction to the UDP equipment

The Ethernet socket has been added in DATE as an alternative data source. The
UDP equipment reads data coming from the Ethernet port of a PC using the UDP
protocol. The readout UDP consists of one Ethernet port used by the front-end
electronics to send data, a second port used by readout to receive data and one
Ethernet cable that connects the two ports. It can be a copper or an optical fiber
cable. Depending on the hardware used it is possible to obtain a data throughput
from 1 Gb/s up to 10 Gb/s. Depending on the acquisition needs and on the number
of available Ethernet sockets, a PC can be equipped with several UDP equipments
(up to 3 Ethernet ports in one PC have been tested so far).

DATE provides all the necessary readout software to operate the Ethernet port on a
PC running Linux via the driver of the network card. The following sections
concentrate on the equipment software for the UPD readout.

7.4 Internals of the UDP equipment

The goal of the UDP equipment is to read data from one or more LDC Ethernet
ports. The front end electronics send data using the UDP protocol, packing events
in frames of a maximum size of 9KB. The UDP readout software has to be
structured in equipment routines as explained in Chapter 6.
ALICE DAQ and ECS manual

146 The RORC readout software
�

7.4.1 Data transfer mechanism of the UDP equipment

The mechanism to transfer data from an Ethernet socket to the memory of the PC
has been inherited from the RORC algorithm and requires the following activities:

1. Read: the process reads data, if any, from the UDP receiver buffer. A counter is
increased every time a packet has been read by this process. When the counter
reaches a value equal to the maximum number of packets that the UDP receiver
buffer can accept, the process checks if the buffer is empty. If the buffer is empty
it sends a word to the front end electronics asking for more data (see
Section 7.4.2).

2. Transfer: the process transfers data from the Ethernet socket to the data page
if the rorcSimulatorFreePages is bigger than 0. This can only take place if
there is data arriving from the socket and if the rorcReadyFifo is not full.
When the data transfer is completed, the process fills the rorcReadyFifo with
information about the transfer. The rorcReadyFifo is located in the memory
of the PC and has 128 entries. Each of these entries consists of two fields: the
length (32 bits) in words of the transferred data, and the transfer status (32 bits).
The status field can be either a DTSTW (Data Transmission Status Word) or 0 if
more pages are about to follow. A DTSTW marks the end of a sub event.
Whenever a free data page with a particular index is used by the process during
a fill activity, the status field of this indexed rorcReadyFifo entry has to be
initialized to -1.

7.4.2 The back-pressure algorithm

UDP uses a simple transmission model without explicit hand-shaking dialogues to
guarantee reliability, ordering and data integrity. Error checking and correction
must be performed in the application. The UDP readout equipment implements a
software back-pressure to avoid an overflow of the socket receiving buffer.
Figure 7.5 shows the behavior of the back-pressure algorithm. The board will send
data to the DAQ system at the maximum speed until a fixed number of packet have
been sent. This number of packets can be calculated using the following formula:

fixed number of packets = SOCKET RECV BUF SIZE / MAX UDP PACKET SIZE

Once the number of packets sent reaches the number of packets expected, the
detector electronics enters in an idle loop waiting for a specific word coming from
the readout software. Once received, the board continues sending data stored in its
buffer, if any is present.
ALICE DAQ and ECS manual

Internals of the UDP equipment 147
 7.5 The back-pressure algorithm.Figure

7.4.3 Equipments to handle the Ethernet port

The UDP readout software is implemented by two equipment types in the UDP
equipment suite which is provided in the package readList (see Chapter 6):

• RorcDataUDP is responsible for initializing the socket and to handle the data
packets from the Ethernet port. One such equipment needs to be instantiated
for each Ethernet socket in an LDC. It has the attribute GENDATA and can be
configured by several parameters (see Section 7.2.4.1).

• RorcTrigger is responsible for indicating the availability of a sub-event,
where each port contributes a fragment. Exactly one such equipment for each
LDC needs to be instantiated. It has the attribute TRIGGER and can be
configured by one parameter (see Section 7.2.4.2).

The equipment routines are participating in the construction of a sub-event in
paged mode (see Chapter 3), as shown in Figure 7.3. The sub-event is described by
a 1st level vector, which is composed of the base header and three equipments.
Each of the equipments is represented by an equipment header and an equipment
vector. The equipment vector of the first equipment points via a pair <bank id, bank
offset> to a 2nd level vector, which is composed of three payload vectors in
sequence. Each vector points again via a pair <bank id, bank offset> to one data
page. The equipment vector of the second equipment points to a 2nd level vector
ALICE DAQ and ECS manual

148 The RORC readout software
�

with two payload vectors. The equipment vector of the third equipment directly
points to one data page via a pair <bank id, bank offset>. As an option, an
equipment vector may always point to a 2nd level vector, even if it contains only
one payload vector.

7.4.3.1 Equipment RorcDataUDP

The equipment routines of RorcDataUDP for reading data from one port are the
following:

1. ArmRorcDataUDP(): it checks equipment parameters and logs a message. It
allocates and initializes the rorcPageOffsetFifo, the rorcReadyFifo, and
the FragmentReadyFifo. It opens the socket connected to the Ethernet port.

2. AsynchReadRorcDataUDP(): it reads data stored in the socket receiving
buffer and copies them into the memory of the PC.

3. EventArrivedRorcDataUDP(): this routine is empty.

4. ReadEventRorcDataUDP(): it takes out a fragment from the
FragmentReadyFifo and uses it to fill the equipment header and equipment
vector of the 1st level vector.

5. DisArmRorcDataUDP(): it closes the socket and de-allocates all memory
blocks.

7.4.3.2 Equipment RorcTriggerUDP

The equipment routines of RorcTriggerUDP are used for triggering the Ethernet
port. The global flag allFragmentsReadyFlag is used as trigger mechanism.
This flag is set to TRUE at the beginning of each iteration of the inner data-taking
loop, and set to FALSE if FragmentReadyFifo is empty. Hence, if there is at least
one fragment in each FragmentReadyFifo, the value of this flag remains TRUE
(“trigger arrived”). The routines are the following:

1. ArmRorcTriggerUDP(): it checks the existence of memory banks, checks if
the rcShm flag Paged data flag is set, and logs a message.

2. AsynchReadRorcTriggerUDP(): it sets the allFragmentsReadyFlag to
TRUE.

3. EventArrivedRorcTriggerUDP(): it returns the value of
allFragmentsReadyFlag.

4. ReadEventRorcTriggerUDP(): it initializes in the base event header the
eventId field (needed for CDH processing) and the eventTriggerPattern
field.

5. DisArmRorcTriggerUDP(): this routine is empty.

7.4.4 Data flow for multiple UDP equipments

One LDC can host more than one Ethernet port, in which case the fragments from
each channel need to be built together to constitute the sub-event. To understand
the asynchronous data flow, see Figure 7.4 showing the logical view for three
devices.
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
8
The trigger
system

In the ALICE DAQ system, the detector readout is based on the DDL or the
Ethernet/UDP link. The trigger mainly interacts with the detectors, while DATE
accepts a continuous flow of data. The DATE software is self-triggered by the
availability of complete sub-events in the LDC memory.

This chapter discusses the trigger requirements of DATE and gives some
indications on how to set up the trigger system.

8.1 The trigger system . 150

8.2 LDC synchronization via the equipments 151

150 The trigger system
�

8.1 The trigger system

The ALICE trigger is designed for two different types of beams: Pb-Pb beams with
125 ns bunch crossings and pp beams with 25 ns bunch crossings. The trigger
system identifies the events that are supposedly worth to be read out and activates
their readout.

Triggering the data–acquisition system is a complex operation that involves a
variety of actions, such as sending signals to each detector with the proper timing,
activate the readout processes and distributing some information about the event
(e.g. event identification). In ALICE, different types of triggers are generated,
involving different sets of LDCs. DATE is made to cope with this set of
requirements.

8.1.1 The Central Trigger Processor (CTP)

The general architecture of the ALICE Trigger is shown in Figure 8.1. The Central
Trigger Processor (CTP) receives the input from the trigger detectors and the LHC
clock from the TTC Machine Interface (TTCmi). For every bunch crossing, and
according to the busy status of all the detectors, the CTP produces trigger decisions
which are transmitted to every detector via its own Locat Trigger Unit (LTU). The
LTU converts these decisions into messages which are distributed to the detector
electronics via the TTC broadcast system thanks to the TTCvi and TTCex modules.
More information about the ALICE Trigger and the TTC system can be found
respectively in Ref. [11] and [12].

 8.1 ALICE Trigger.Figure

CTP

LTU

Detector
Electronics

BUSYDRORC

LDC

TTCmi

Orbit, bunch crossing

L0 inputs

L1 inputs

L2 inputs

LHC RF clock

TTCvi

TTCex

TTCrx

Detector
Electronics

TTCrx

DRORC

DDL

DDL

DAQ

To HLT

The information transmitted by the TTC messages include trigger information
(trigger class for physics triggers and list of detector for software triggers), and a
unique event identification (orbit number and bunch crossing).
ALICE DAQ and ECS manual

LDC synchronization via the equipments 151
In DATE, the major requirement for the trigger system is to inform the LDCs of the
availability of the next event, in such a way that they can collect the sub-events in a
synchronous way. The synchronization of the LDCs is implemented in DATE by a
mechanism that recognizes the events, based on the readout program (see
Chapter 6).

The processing of the readout program consists of a series of operations made in a
tight loop. One of them polls the EventArrived routine, which provides the event
synchronization. The EventArrived strongly depends on the synchronization
method adopted.

The synchronization of the LDCs is achieved by a data–driven mechanism (see
Section 8.2). The DDL injects data in the LDC memory in an autonomous way. The
DDL data structure keeps the knowledge of the original blocks generated by the
detector and marks the boundary of them. The arrival of a new block is notified to
the readout software and is assumed to be a new event.

Since the LDCs work independently (there is no communication between them), it
is important that they receive an ordered sequence of triggers. Keeping the order of
the sub-events collected by each LDC is essential for the event builders which
subsequently assemble the sub-events into a full event. Independent verification
mechanisms are put in place to catch the occurrence of an LDC losing a sub-event.
One of these mechanisms is based on the unique event identifier (orbit number and
bunch crossing) that is transmitted by the trigger system. This identifier must be
transmitted to an electronic module in order to be included in the sub-events by the
data source.

DATE uses the event identifier located in the sub-event header to perform various
consistency checks, which are made both by readout in the LDCs and by the
eventBuilder in the GDCs.

8.2 LDC synchronization via the equipments

Two types of readout links are supported by DATE: the DDL and the
Ethernet/UDP links.

The DDLs are read by the LDCs via the Read-Out Receiver Card (RORC). Two
types of RORCs are presently supported by the ALICE DAQ:

• The dual channel D-RORC interfaces two DDL channels with embedded DIUs
to a 64 bit/64 MHz PCI bus.

• The dual channel D-RORC interfaces two DDL channels with embedded DIUs
to a PCI Express (PCIe) bus.

The Ethernet/UDP links are read by using the Gigabit Ethernet or 10 Gigabit
Ethernet interface available on the PC Motherboard or added as a PCI or PCIe
add-on board.

In this section these different versions of RORC cards and of Ethernet interfaces
will all be commonly referred as equipments, since they are exactly identical from
the DATE/trigger interface point of view.
ALICE DAQ and ECS manual

152 The trigger system
�

The equipmentList software contains several equipments which handle the
RORC hardware and the Ethernet link. Two of these equipments are relevant for
the trigger handling. Their behaviour is briefly described here. More details on the
operation of them can be found in Chapter 6.

The equipment injects a continuous stream of event fragments into the LDC
memory in an autonomous way. There may be several equipments in an LDC; each
of them owns an instantiation of the RorcData equipment for the RORC or
RorcDataUDP equipment for the Ethernet/UDP equipment, which keeps a list of
the fragments arrived. The RorcData equipment keeps the list of available data
fragments (FragmentReadyFifo) up to date . It also updates the global flag
allFragmentsReadyFlag by setting it to FALSE if its own
FragmentReadyFifo is empty.

The RorcTrigger equipment is unique in each LDC. It is used for triggering the
readout of one or more RORC or Ethernet/UDPchannel(s). The global flag
allFragmentsReadyFlag is used as trigger mechanism. This flag is set to TRUE
at the beginning of each iteration of the inner data- taking-loop, and set to FALSE in
case of an any empty FragmentReadyFifo. Hence, if there is at least one
fragment in each FragmentReadyFifo, the value of this flag remains TRUE
(“trigger arrived”). The readout software is informed when a sub-event is complete
and ready to be acquired. The sub-event is ready for readout when all the RORCs
or Ethernet/UDPchannels have received all the fragments belonging to an event
and the fragments have been joined into a sub-event.
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
9
COLE -
COnfigurable
LDC Emulator

COLE (Configurable LDC Emulator) is designed to create ALICE-like events
according to a simple user-defined configuration file. It replaces the standard DATE
readList and follows the directions given in the DATE configuration files and
databases.

9.1 Introduction. 154

9.2 Delayed mode vs. free-running mode 155

9.3 System requirements and configuration. 155

9.4 COLE as an Equipment . 157

9.5 Basic Design . 157

9.6 The colecheck utility . 158

154 COLE - COnfigurable LDC Emulator
�

9.1 Introduction

COLE (COnfigurable LDC Emulator) is designed to create ALICE-like events
according to a simple user-defined configuration file. It is a replacement for the
standard DATE readList module that is compiled and linked with the readout
program. The aims of COLE are to provide complete and flexible control over the
structure of the input stream to DATE and the functionality to reconfigure the
readout program without the need for re-compilation. The COLE configuration file
is used to define details of the events to be created by the readout program, event
by event. COLE features include:

1. configurable/flexible:

• no re-compilation required to reconfigure DATE stream.

• fully scalable.

• a single configuration file controls all of COLE.

• integrated with ALICE DATE databases used for the DATE configuration
(detector, trigger, event building policies).

• support for streamlined and paged event mode.

2. pre-defined event stream:

• different event types.

• global synchronized event ID.

• pre-set trigger/detector patterns.

3. simulated ALICE trigger classes:

• support for partial event building and use of trigger/detector patterns to
create events.

• non-global events (to perform partial event building).

• use of pre-configured trigger patterns to create events.

4. simulate ALICE raw data:

• configurable on an event-by-event, equipment-by-equipment and
host-by-host basis.

5. simulate trigger and detector delays:

• possible to simulate delays on a detector-by-detector and trigger-by-trigger
basis.

6. simulate burst mode structure:

• test-beam like data traffic.

• creates bursts of a given number of events defined in common run
parameters.

• control of burst number and number in burst.

7. DATE Equipment:

• COLE is fully implemented as a standard DATE equipment.
ALICE DAQ and ECS manual

Delayed mode vs. free-running mode 155
9.2 Delayed mode vs. free-running mode

As COLE is mainly used to emulate DAQ systems, it may suffer from the absence
of a real triggering system. LDCs may go out of synch and find themselves
hundreds of events away, as a function of the relative loads on individual machines
and on the event building network. For this reason the delayed mode was
introduced. When running in delayed mode, COLE waits for a given delay
between events. Synchronization between LDCs is done at start-of-run. Jitters may
still occur due to the absence of a trigger system as a function of the actual time of
the start-of-run for each LDC and to different load on the LDCs. The LDCs will
keep track of the cumulated delays and - if needed - will try to re-synchronize
whenever possible. A threshold can be set to generate warning messages coming
from LDCs that cannot keep up with the requested timing. Delays can be specified
on an event-by-event basis and on a detector-by-detector basis. All delays are given
in microseconds.

9.3 System requirements and configuration

DATE must be installed and available on all hosts that are to use COLE. The
data-acquisition system must be correctly configured. In addition the following
files must be created:

a. event payloads: stored in ${DATE_SITE}/${HOSTNAME} they contain the
payload associated to all the events created by COLE during a single run. One
LDC can have multiple payloads associated to multiple events. More events can
share if needed the same payload file. More LDCs may share the same payload
files by means of Unix symbolic links.

b. COLE configuration: specified by the symbol ${DATE_COLE_CONFIG} it
allows the control of the stream created by COLE. It consists of an ASCII file
divided into three sections:

• Options: global options used for all events.

• Events: the stream of events created by the DATE system as a whole.

• Detectors: detector-specific parameters.

An example of COLE configuration is given in Listing 9.1.

 9.1 Example of COLE configuration:Listing

1: >Options_section
2: UseDelay 1
3: UseRandomEvent 1 12321
4: Threshold 1000
5: >Events_section
6: trdDetector CAL * 10+4 raw2 40
7: * PHYS trdTrigger 5 raw1 40
8: * PHYS centralTrigger 1+2+3 raw3 40
9: >Detectors_section

10: trdDetector 20 12
11: tpcDetector 30 13
12: itsDetector 40
ALICE DAQ and ECS manual

156 COLE - COnfigurable LDC Emulator
�

The available options are:

• UseDelay: delayed emulation mode active (1) or inactive (0).

• UseRandomEvent: directs COLE to create events according to the given list (0,
default) or to create pseudo-random events (1): in the second case an optional
initial seed for the pseudo-random number generator can be provided (default:
12345).

• Threshold: delay (in microseconds) used to issue warning messages when the
LDC is unable to keep the requested delay between events (delayed emulation
mode only).

The events section defines the events as they are created by the DATE system as a
whole. Events are specified as:

• detector pattern: the detector(s) that participate to the event (“*”: no detector
pattern). This list could also contain names of individual LDCs. Mixing
detector(s) and LDC(s) is not allowed. Multiple names must be separated by
“+”.

• event type (SOD for start of data events, EOD for end of data events, PHYS for
physics events, CAL for calibration events, SST for system software trigger
events or DST for detector software trigger events).

• trigger pattern associated to the event (“*”: no trigger pattern). Multiple trigger
classes (separated by “+”) can be specified.

• attributes set in the event (“*”: no attributes set). Attributes are specified by
value. Multiple attributes can be given separated by “+”.

• payload of the event (path relative to ${DATE_SITE}/${DATE_HOSTNAME})
The filename is combined with the equipmentId to create a unique,
per-equipment filename. If the filename has no extension, COLE will append
_equipmentId to it (e.g. for equipment 123, coleData becomes
coleData_123). If the filename has an extension, COLE will insert
_equipmentId between the base name and the extension (e.g. for equipment
123, coleData.raw becomes coleData_123.raw).

• delay (in microseconds) for the generation of the event (0: no delay). If two
values are given, a pseudo-random number will be extracted within the given
range. This number will be the same for all the LDCs belonging to the same
detector.

The LDCs participating in a data-acquisition system will loop on the given list. For
each line (in sequence or following a pseudo-random sequence) encountered, they
will wait for the given delay. When they are supposed to contribute to the event,
they will first wait for the detector-specific delay and then create their sub-event
with the given parameters and payload. Events can be driven on a detector basis or
on a trigger basis. In the first case, a list of detectors must be given and the trigger
pattern must contain “*”. In the second case the detector pattern must contain “*”.
In both cases, only the LDCs supposed to create events will do so.

The detector section specifies for each detector the delay (or the range of delays) to
be applied to all events coming from LDCs from this detector. One number
corresponds to a fixed delay. Two numbers will instruct COLE to draw a
pseudo-random number within the given range and use that as a delay.
ALICE DAQ and ECS manual

COLE as an Equipment 157
COLE can simulate a burst structure. This is done when the common run parameter
burstPresentFlag is set. A burst will be closed when more than
simBurstLength events will have been created at the level of the full DAQ
system (less events may have been created at the individual LDC level according to
the triggering criteria).

9.4 COLE as an Equipment

COLE is fully implemented as an equipment and can be used in both streamlined
and paged event mode. The equipment configuration file must be correctly defined
to use COLE as an equipment. An example file is shown in Listing 9.2. Cole will fill
the equipmentHeader structure as any other standard DATE equipment (basic
element size will be set to 4).

 9.2 Example of COLE equipment configuration:Listing

1: >EQTYPES
2: >Cole 1 TRIGGER GENDATA
3: EqId %hd
4: >LDCS
5: >host1
6: + Cole firstCole 1
7: >host2
8: + Cole secondCole 2

9.5 Basic Design

COLE will use and extend the basic structure of the four functions required for each
DATE equipment.

9.5.1 ArmHw()

Called at start of run to perform system initialization such as loading the detectors,
triggers and roles databases. ArmHw will also parse the COLE configuration file and
load all the payloads.

9.5.2 EventArrived()

Simulates the trigger delay used for the delayed emulation mode. A simple state
machine will implement the emulation of the trigger and detector delays.
ALICE DAQ and ECS manual

158 COLE - COnfigurable LDC Emulator
�

9.5.3 ReadEvent()

Called in the main event loop after the arrival of a trigger to perform the readout of
the hardware. It fills in the event header information as defined in the
${DATE_COLE_CONFIG} configuration file. The following fields are handled:

• nbInRun - event number within run. This is the unique number identifying
the event and must be set. This value is used by the event builder and must
increase for each event.

• burstNb - burst number; initialized to 0 by readout.

• nbInBurst - event number within the burst (starts at 0 at each
start-of-burst event).

• event type - physics, calibration, start-of-burst, end-of-burst.

• trigger pattern.

• detector pattern.

• user attributes.

This function also loads the payload of the event.

9.5.4 DisArmHw()

Called at each end of run to perform rundown. Also used to unload the databases
upon completion and to free the dynamic memory allocated by COLE.

9.6 The colecheck utility

The colecheck command line utility is available to validate the structure of a
${DATE_COLE_CONFIG} file and to display a summary of any errors found.

Command line syntax:

colecheck -n <hostname> -f <COLE config file path> [-q] [-h]

• <hostname>: the name of the host you wish to check for in the cole.config file.

• <COLE config file path>: the full path to the COLE configuration file.

• [-q]: quiet mode (only check for errors).

• [-h]: print usage and exit.

colecheck checks the syntax of all events defined in the given COLE
configuration file and checks whether the hostname machine contributes to each
event. If no hostname is given, colecheck only checks the syntax of the
${DATE_COLE_CONFIG} file.
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
10
Data recording

This chapter describes the data recording process and how the data
can be recorded in the LDCs and in the GDCs. It explains also the
conventions concerning the filenames of the data streams that can be
created using DATE.

10.1 Introduction. 160

10.2 Common data recording procedures. 160

10.3 Recording from the LDC . 162

10.4 Recording from the eventBuilder. 163

10.5 Recording with the Multiple Stream Recorder 167

160 Data recording
�

10.1 Introduction

Data recording can be done either on LDCs or on GDCs. A common library is used
by all DATE actors doing data recording (local or remote), the same features are
therefore available throughout the whole DATE system.

The basic GDC recording functionality can be enhanced by using a dedicated DATE
component – the mStreamRecorder (MSR).

This chapter describes the configuration and the behavior of the data recording
process, both common and DATE-role specific.

10.2 Common data recording procedures

The data recording process uses the recordingDevice runParameter, specified
via the runControl. This string can be suffixed by a special character used to
define the type of recording channel. The string can specify an arbitrary number of
output channels all of the same type (no mixture of different channels is allowed
within the same run). These channels are then handled according to the various
configuration parameters concerning file size and maximum amount of data to be
recorded during the run. It is also possible to include in the file name special
characters, to be translated at run-time into machine-specific and run-specific
strings.

The data generated in an LDC can be recorded:

• to a (set of) local disk file(s) (no suffix needed).

• to a (set of) local named pipe(s) (suffix: “|”).

• by sending them to a (set of) GDC(s) (suffix: “:”).

The data generated in a GDC can be recorded:

• to a (set of) local disk file(s) (no suffix needed).

• to a (set of) local named pipe(s) (suffix: “|”).

• using an external recording process (“:“ as recordingDevice).

The recorder and the eventBuilder processes can store their events on the
local machine (either to a file or to a named pipe). In this case, the full path of the
output stream has to be specified in the recordingDevice runParameter, e.g.:

/tmp/my_raw_data.dat
/tmp/my_pipe|

To record on a file, the directory in which the file resides should have write access
for “${DATE_USER_ID}”; one can either give write access for this user (or for the
whole world) to the directory or set the ownership of the directory. Files are created
(and possibly overwritten) according to the status of the data-acquisition system. A
list of comma-separated files can be given as recording device, e.g.
“/tmp/a,/tmp/b,/tmp/c”.
ALICE DAQ and ECS manual

Common data recording procedures 161
To record onto a named pipe, this must be created - before starting the run - via the
Unix command mknod. The appropriate file protection must be set to allow user
“${DATE_USER_ID}” to write into the pipe and to be able to read the pipe via
whatever daemon is required. The filename must be suffixed by “|” (removed from
the recordingDevice string to derive the real name of the pipe). Special care
must be taken in this recording mode as the absence or the unexpected termination
of the data consumer may stall the data-taking process. Some mechanism external
to DATE must be implemented to avoid this scenario.

To record with an external recording process, the eventBuilder must be running
in the “online recording” mode. The recording process, launched at start of run,
must use the API provided within the DATE eventBuilder package
(Section 10.4.2). DATE provides the online recording application MSR, described in
Section 10.5.

If the DAQ system includes one or more GDCs, the recorder process on the
LDC can send the data to them. In this case, the recording device name must be the
host name(s) of the event-builder machine(s) separated by “:”, e.g.:

GDC01:
GDC01:GDC02:GDC03:

In the above example, the machine GDC01 receives all events when the first string
is used while the machines GDC01, GDC02 and GDC03 receive about 1/3 of the
events when the second string is used.

For multiple-GDC environments, the algorithm currently implemented in the
LDCs sends all the non-physics events to the first GDC of the list (in the example
above: GDC01) and then distributes the physics and the calibration events between
all the GDCs of the list, using an algorithm based on the event number and on the
decisions taken from the EDM (when the EDM is active).

It is possible to limit the total amount of information to be recorded in a run by
setting the run parameters maxBytes, maxEvents, and maxBursts. It is also
possible to limit the maximum file size (excluding the case of a network channel)
using the run parameter maxFileSize (in this case, special care should be used
when the output device is a named pipe: the consumer must be capable to handle
the EOF event correctly).

When recording on local file, it is recommended to use a per host, per run file. To
allow automatic generation of unique file names based on those parameters, the
recording library allows the use of some special characters, namely:

• “@” is replaced by the current host name.

• “$” is replaced by the current role name.

• “!” is replaced by the current role ID.

• “#” is replaced by the current run number.

For example, using the recordingDevice:

/data/run_#.raw

the data of the run 1020 is recorded into the file /data/run_1020.raw (assuming
there is no limit on the file size). The recording library replaces the first occurrence
(left to right) of the special characters with the corresponding run-time value.
ALICE DAQ and ECS manual

162 Data recording
�

If there is a limit on the maximum file size, the data will be recorded to a sequence
of files. Their filenames will be formed by the addition of the original filename for
this run and a sequential number (preserving the file extension, if any). In the
example above, the following files are created:

/data/run_1020.000.raw
/data/run_1020.001.raw
/data/run_1020.002.raw

The file with sequential number “000” can be reserved (when the appropriate
runtime parameter is set) for the data recorded during the start of run phase. In this
case, the first file includes the records of the types START_OF_RUN and
START_OF_RUN_FILES and it is closed as soon as all the START_OF_RUN
record(s) tagged with ATTR_P_END attribute have been recorded.

When writing to a set of identical local devices (files, tapes, pipes, etc.), the
recording library sends events to the first channel found available (as seen from the
Operating System output library). The decision if a channel is busy or not is taken
the moment the request to write an event is issued from the data producer
(recorder or eventBuilder). The actual destination of a given event is therefore
a function of the Operating System and of the device itself and - in general - cannot
be predicted beforehand.

10.3 Recording from the LDC

The processes that are always running in an LDC during the data taking phase are
the readout process (see Chapter 6) for receiving the event fragments from the
detector electronics, and the recorder process for moving the assembled
sub-events either to local storage devices or to the GDC machines over the event
building network. In the following the recorder process will be presented in
more details, in particular its recording capabilities. The source code of it is located
in the readout package.

The recorder process performs the following sequence of operations in the order
described below:

1. maps to all memory banks that are configured for this LDC in the banks
database (see Chapter 4).

2. saves its own process ID in the shared memory control region, which allows the
readout process to suspend and to resume the recorder process.

3. opens file(s) on local storage device(s) or connects to remote GDC machine(s)
depending on the LDC run parameter recordingDevice, which is fully
explained in Section 10.2:

• if the name of the recording device does not terminate with “:”, then the
recorder process writes all sub-events to files on the local storage device.
This is typically the case when the data-acquisition system is composed by a
single LDC without event building.

• if the name of the recording device does terminate with “:”, then the
recorder process takes it as the name of a remote GDC machine and opens
ALICE DAQ and ECS manual

Recording from the eventBuilder 163
a TCP/IP socket connection for transmitting the sub-events. In this case the
data-acquisition system has event building provided by one or more GDC
machines.

4. enters the event loop, in which the event descriptors are taken out from the
recorderInput FIFO and each sub-event is either written on a file or is sent
over the event building network to a GDC, depending on the recording device.
All recording operations are done by calling routines of the high level library
from the recordingLib package (see Section 16.4). An event descriptor points
either to a streamlined or paged sub-event (see Chapter 3). After a successful
recording of a sub-event, the recordingLib routines also take care to update
the relevant run-time parameters and to deallocate the associated memory
blocks of the sub-event.

5. closes the local file or the socket connection(s), after exiting the event loop.

In the event loop the recorder process continuously checks for the arrival of the
end of run command. It exits the event loop if one of the following conditions are
met:

• the maximum number of bytes to be written (given by the LDC run parameter
maxBytes) has already been reached.

• there have been too many errors in writing the file or in the transfer over the
event building network.

• the operator asked to stop the run.

• a fatal error occurred, which is indicated by a non-zero value of the
runEndCondition variable in the shared memory control region.

In the first three cases the recorder process tries to write all the pending
sub-events (represented by their event descriptors) in the recorderInput FIFO
onto the recording device before exiting, whereas in the last case the recorder
process does not empty the recorderInput FIFO before exiting. In the simplest
case the readout process is the producer of the event descriptors, thus the
recorderInput equals the readoutReadyFifo.

The recorder process uses the infoLogger package to report and trace error or
abnormal conditions, and to trace state changes. The operator can tailor these
features to the required needs by setting the value of the LDC run parameter
logLevel. Output messages produced by the recorder process are sent to
${DATE_SITE_TMP}/${DATE_ROLENAME}/recorder/recorder.log. The
same directory will also store the core files that may be created by the recorder
process in case it gets terminated by an unrecoverable signal. The recorder
process runs as the user defined in the DAQ configuration database. Directories
protections and ownerships must be set accordingly.

10.4 Recording from the eventBuilder

Recording on the GDC begins at the level of the eventBuilder process. Two
options are available at this stage: direct recording, where the eventBuilder
writes the raw events directly to a given local device, or online recording, where the
events are transmitted to a further stage, for handling and recording. The two
ALICE DAQ and ECS manual

164 Data recording
�

schemes are exclusive on the same GDC while different GDCs can use different
schemes and/or different run-time parameters.

10.4.1 Direct recording

The eventBuilder can record data directly using the DATE recordingLib
package (the same package used by the recorder process on the LDCs). If
multiple output streams are specified, the eventBuilder uses the first available
recording channel. This channel is ensured to be able to accept a new I/O request
(although it is not sure if it is able to complete it). All options made available by the
DATE recording library are available on the GDCs.

10.4.2 Online recording

The eventBuilder can transfer “ready” events to an optional processing stage.
Events are moved using an internal format and can be accessed by another process
using a copy-less, memory mapped access scheme. Only one process can attach
itself to the output of the eventBuilder during a given run. This process must
use the API provided within the DATE eventBuilder package.

Online recording can be activated giving “:” as recording device.

The resource eventBuilderReadyFifo must be declared for the GDC in the
banks database in order to be able to perform online recording.

Events are normally transmitted from the eventBuilder to the requester using
iovec structures. These structures are standard entities used by Unix I/O libraries
and cannot be shared across processes. When the requirement to transfer these
vectors to other processes exists, then event descriptors should be used.
Event descriptors are process-independent entities and can be transformed at any
time to equivalent iovec structures (which are process dependent). Event
descriptors are allocated in the process’ local address space and therefore need
external mechanisms for their transfer to other processes (e.g. shared message
queues or shared memory blocks).

An API is available for C and C++. The file ${DATE_EB_DIR}/libDateEb.h
should be included (use the “-I ${DATE_EB_DIR}” compiler directive) and the
library ${DATE_EB_BIN}/libDateEb.a should be used during the link phase.
Please note that several other include files and libraries are needed for a successful
compilation: refer to the file ${DATE_EB_DIR}/simpleConsumer.c and the
associated rules within ${DATE_EB_DIR}/GNUmakefile for a complete list.

struct iovec

C Synopsis #include <sys/uio.h>

struct iovec { ... }

Description Structure used to describe an event created by the eventBuilder. For the actual
implementation of the structure, refer to the system include files and/or to the
ALICE DAQ and ECS manual

Recording from the eventBuilder 165
relative manual pages (e.g. “man readv”). The I/O vector described by this
structure has numOfLdcs + 1 entries (where numOfLdcs is the number of LDCs
contributing to the event) with entry number 0 being the header of the super event.

ebRegister

C Synopsis #include “libDateEb.h”

int ebRegister(void)

Description Registers the process with the eventBuilder and attaches to its memory banks.

Returns TRUE in case of success, FALSE otherwise.

ebGetNextEvent

C Synopsis #include “libDateEb.h”

struct iovec *ebGetNextEvent(void)

Description Gets the next available event from the output queue of the eventBuilder.

Returns NULL if the queue is empty, -1 on error, pointer to I/O vector otherwise.

ebGetNextEventDescriptor

C Synopsis #include “libDateEb.h”

int ebGetNextEventDescriptor(
 void **descriptor,
 int *descriptorSize)

Description Gets the descriptor to the next available event from the output queue of the
eventBuilder. On success, the descriptor parameter is loaded with the
address of the result and the descriptorSize parameter contains the size in
bytes of the descriptor. The format of the descriptor is not published and may vary
between releases of DATE. The event descriptor can be manipulated only using the
ebDescriptorToIovec routine and it must be released using the
ebReleaseDescriptor() routine.

Returns 0 if the queue is empty, -1 on error, integer positive value otherwise.
ALICE DAQ and ECS manual

166 Data recording
�

ebReleaseEvent

C Synopsis #include “libDateEb.h”

int ebReleaseEvent(struct iovec *)

Description Releases the event described by the given I/O vector. The parameter must be an
I/O vector returned by a previous call to ebGetNextEvent(). The routine also
disposes the input iovec that must not be used after this routine returns.

Returns TRUE in case of success, FALSE otherwise.

ebReleaseDescriptor

C Synopsis #include “libDateEb.h”

int ebReleaseDescriptor(void *descriptor)

Description Releases the descriptor of the event pointed by the input parameter, which must
have been returned by a previous call to ebGetNextEventDescriptor(). Please
note that this call will not release the event itself (for this purpose use the
ebReleaseEvent() routine).

Returns 0 in case of success, -1 otherwise.

ebDescriptorToIovec

C Synopsis #include “libDateEb.h”
struct iovec *ebDescriptorToIovec(void *descriptor)

Description Converts the input parameter, which must have been returned by a previous call to
ebGetNextEventDescriptor(), to a standard iovec structure. The descriptor
and the iovec must be disposed using the appropriate routines
(ebReleaseDescriptor() and ebReleaseEvent()).

Returns 0 in case of success, -1 otherwise.

ebEor

C Synopsis #include “libDateEb.h”

int ebEor(void)
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 167
Description Checks for end of run.

Returns TRUE if the run is closed and no more data is available from the eventBuilder.

ebGetLastError

C Synopsis #include “libDateEb.h”

const char * const ebGetLastError(void)

Description Gets a string describing the last error condition encountered by the library.

Returns Pointer to a read-only string.

10.5 Recording with the Multiple Stream
Recorder

10.5.1 Overview

The online recording described in the previous section liberates the eventBuilder
from the overheads related to physical data recording and lets it free to execute its
principal task more effectively. The benefits of this mode can be important when
event pre-processing is required before recording, especially on
multi-processor/multi-core platforms. Additional gains can be achieved by having
several concurrent recording streams: when one stream is busy (e.g., is waiting for a
file to open), other streams could carry on. This effect is marginal when one is
recording to a fast local file system. However, when one is dealing with a remote
mass storage system having a limited throughput per data stream, such as
CASTOR [9], use of multiple stream recording becomes essential. The experience of
the ALICE data challenges suggests that >2 recording streams per GDC are needed
to match CASTOR’s aggregate throughput with the one of DATE.

The DATE mStreamRecorder process (MSR) is the default online recording
application for the eventBuilder, designed with the above considerations in
mind. It enhances the basic GDC recording features by offering:

• concurrent asynchronous and individually configurable recording streams.

• a possibility to record to CASTOR.

• real-time transcoding of raw events into a ROOT [10] tree format compatible
with the ALICE offline analysis software, using AliRoot API [16].

MSR can be run either together with the eventBuilder configured for online
recording, or as a stand-alone application to “replay” pre-recorded raw data files. It
consists of the main steering and dispatching process, disp, and a number of
concurrent stream processes running on the same machine (see Figure 10.1).
ALICE DAQ and ECS manual

168 Data recording
�

disp is launched at the “Start processes” phase of the run control. Its task is:

• to read and interpret the configuration file.

• to configure and fork the stream processes.

• to read the event descriptors from the output FIFO of the eventBuilder and
dispatch them to the streams, via individual FIFOs.

• to report the status information to DATE.

 10.1Figure

Event descriptors via
SimpleFifo

Dispatching algorithm

File destination
nEvents via EB Consumer API assigned to stream n

Fatal condition Reporting to
signals infoLogger

(optional) raw/ROOT
transformation

EB buffer

GDC disp …

mStreamRecorder

stream

1 ……….2 N

Recorder shared memory (internal logging)
Config file

Event
Builder

1

2
stream

stream N

GDC host

A schematic block-diagram of the mStreamRecorder. The legend is shown at the top

The available dispatching methods distribute the events uniformly between the
streams. An option of having dedicated streams with custom filtering (e.g.,
according to trigger pattern) is reserved but not implemented yet.

Each stream is totally independent of other stream processes. Its tasks are:

• to receive event descriptors dispatched to it by disp via the individual FIFO.

• to construct the iovec pointing to the corresponding event parts (the header
and sub-events) in the eventBuilder buffer.

• to manage output files on a specified destination.

• to write the events, optionally transformed into ROOT structures, to the output.

• to handle I/O errors and report its status to disp and DATE.

MSR uses the following DATE components: the eventBuilder client API
(Section 10.4.2), the simpleFifo (Section 16.3) package and the DATE
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 169
infoLogger (Chapter 11). The source codes and the related executables are
located in ${DATE_MSTREAM_DIR} and ${DATE_MSTREAM_BIN} directories,
respectively.

The following sub-sections describe how to configure and run MSR.

10.5.2 MSR configuration file

10.5.2.1 Configuration file: naming and handling

The configuration of mStreamRecorder is done on a per-partition basis. This
allows different partitions to use dedicated set of parameters such as file size or
destination path. Two approaches are possible:

1. create a specific configuration for each partition;

2. create a generic template to instantiate for each partition.

A specific configuration file has priority over a generic template.

Specific configuration files use the file name
mStreamRecorder.PART_NAME.config where PART_NAME is:

• the name of the partition for standalone runs (e.g. started via DCA);

• the name of the partition preceeded by ALL (e.g. ALLPHYSICS_1 for the
partition PHYSICS_1) during global runs (e.g. started via PCA).

Specific configuration files are used “as is” by mStreamRecorder.

A generic template must be saved under the name
mStreamRecorder.config.template and it contains the configuration
defined below with the inclusion of the following run-time fields:

• __WRITE_VOLUME__: this field can be used to select a partition-dependent
write volume and it is replaced at run-time by the name of the partition;

• __FILE_NAME_ATTR__: this field can be used to create a file name which is
partition-dependent and usable by the TDSM for run-time selection purposes. It
is replaced at run-time by _nameOfDCA for standalone runs (nameOfDCA
contains the name of the DCA, usually the name of the detector) or by the
keyword ‘_Technical’ during technical runs (to allow writing the data
coming from technical runs into a separate directory, easier to handle from the
PDS side). During physics runs, the field is simply removed from the file
name.

The template approach shall be used for sites running multiple partitions. Test sites
should rather use specific creation files which are easier to read and to maintain.

10.5.2.2 Configuration examples

A DATE user may wish to record to a variety of output destinations (local file
system, CASTOR, remote file server) and use different data formats (raw
eventBuilder format, ROOT tree) and/or protocols (local, RFIO, ROOTd). This
diversity can be described in a concise and flexible way by the MSR configuration
ALICE DAQ and ECS manual

170 Data recording
�

file whose syntax is based on the “name key=value key=value...”
paradigm.

In simple cases of a uniform configuration for all GDCs, this file may consist of just
a few lines, as is illustrated by examples in Listing 10.1 and Listing 10.2. They differ
mainly in the definition of the default output stream (default_str): CASTOR
files in Listing 10.2 need more attributes to be defined. Other minor differences
illustrate the grammatical features which will be explained later.

 10.1 A simple configuration with 3 streams per GDC, recording to a local diskListing

1: >COMMON Nstreams=3
2: >RECORDERS
3: default_rec
4: >OSTREAMS
5: default_str path=/scratch fsize=1024

 10.2 A simple configuration with 3 streams per GDC, recording to CASTORListing

1: >COMMON
2: >RECORDERS
3: default_rec Nstreams=3 stream=default_str
4: >OSTREAMS
5: default_str fsize=1024
6: pool=alice_stage stager=stagealice
7: path=/castor/cern.ch/alice/daq_dev/daq_recorder

Listing 10.3 shows the configuration for ROOT recording to CASTOR via ROOTd
protocol, the same for all GDCs.

 10.3 The configuration for ROOT recording to CASTORListing

1: # ROOT recording to CASTOR
2: >COMMON timing=1 loglevel=1 Nstreams=3 root=3
3: >RECORDERS
4: default_rec method=2
5: stream=default_str fsize=255 !! NB: fsize has no effect here!
6: >OSTREAMS
7: default_str sleep=1 path=/castor/cern.ch/user/d/developer
8: filename=%h_%R_%s_%f_%T.root ! ROOT-style filename
9: mxrecl=0 fsize=1024
10: pool=default stager=lxs5007 !!!! special CASTOR stager!

Finally, a more complicated example in Listing 10.4 shows how to arrange separate
configurations for different GDCs and define a variety of streams with different
output destinations. It also illustrates most of the syntactic and semantic rules of
the MSR configuration language.
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 171
 10.4 The configuration with special properties for the GDC pcaldXXgdcListing

1: !\
2: A special configuration for pcaldXXgdc
3: Author: DATE developer April 2005
4: \!
5: # common definitions
6: >COMMON method=1 loglevel=1 sleep=1
7:
8: # recorder definitions
9: >RECORDERS

10: default_rec method=2 stream=default_str ! single stream
11: pcaldXXgdc fsize=255 Nstreams=4 ! four streams
12: filename=%h_%r_%s_%f.data stream=default_str stream=public \
13: filename=Test_%r_%f.data stream=test
14:
15: # output stream definitions
16: >OSTREAMS
17: default_str sleep=2 path=/local \
18: mxrecl=0 ! line-continuation sign “\” is optional
19: pool=public stager=stagepublic fsize=2047 ! fsize is in MB
20: test path=/castor/cern.ch/user/d/developer/test_dir \
21: =public ! a copy of all attributes of stream public
22: public mxrecl=20000 path=/castor/cern.ch/user/d/developer

10.5.2.3 File names

MSR produces per host, per run and per stream output files. The meta-characters
“@“ and “#“ can be used in their names, as described in Section 13.2. In addition,
MSR interprets the percent sign “%” as a meta-character in all filenames appearing
in the configuration file. The letters preceeded by “%” are replaced with the
corresponding values at the run time, as follows:

• %r – (same effect as “#”) the run number, without leading zeroes.

• %h – (same effect as “@”) the short host name, like the one produced by the
Linux command “hostname --short”.

• %H – the full host name, e.g. pcaldXX.cern.ch, as produced by the Linux
command “hostname --long”.

• %G – the full GDC name, as specified by the hostname attribute in the role
database.

• %g – same as “%G”, with the “gdc” suffix stripped off, if present.

• %R – the 8-digit run number, with leading zero-padding.

• %s – the stream number (the numbering starts with 0).

• %f – the sequential file number (the numbering starts with 1).

• %F – the 3-digit sequential file number, with leading zero-padding.

• %T – the current time stamp, in the form YYYYMMDD_hhmmss.

• %S – the stream sequential number.

The default output file name is “%h_%R_%s_%f.data“. Unlike with the direct
GDC recording, the files with sequential number 0 are not created. The start-of-run
events are transferred to the first stream(s) that become available to disp.

A user can change the default file name template by using the filename attribute
in the MSR configuration file. The name “%h_%R_%s_%f_%T.root“ is strongly
ALICE DAQ and ECS manual

172 Data recording
�

recommended for ROOT data files. The directory part of the fully specified file
name must be defined by the obligatory path attribute. CASTOR files are
distinguished by the “/castor/cern.ch“ prefix in the path name. Note, that
ROOT recording is not automatically enabled even if the “.root“ suffix is
specified. For that purpose the attribute root should be used.

10.5.2.4 The configuration file syntax: tags and attributes

This section presents a formal description of the MSR configuration file syntax and
semantics.

A MSR configuration file is a free-format plain text file in which the word items
(contiguous strings of non-blank text characters, up to 512 characters long) are
interpreted as either tags, or attributes. The items are separated by blanks, or tabs, or
new lines, or an arbitrary mixture of them.

The tags starting with a bracket ”>” are called structural: they identify different
levels in the configuration tree. All other tags are just names of objects belonging to
those levels.

The attributes, distinguished by the equal sign “=“ in the item, have to follow the
tag which they qualify. The part to the left of the equal sign is the attribute key, the
part to right is the attribute value, internally stored as a text string. The combination
of a tag and its attributes will be referred to as a tag definition. Tags without
attributes are syntactically correct.

The attributes with the empty key, such as “= something” have a special
meaning: they are replaced with a copy of all attributes belonging to another tag
given as the value. For example, in Listing 10.4 the stream “test“ has an attribute
“= public”, so all attributes of the stream “public“ will be appended to “test”.
As the result, the stream “test“ will receive the new attribute mxrecl, as well as
the second path attribute (which will be ignored at the semantic level because of
rules of precedence, described later).

The layout of configuration files is not fixed by the syntax. For example, the entire
configuration file may consist of a single line, e.g.

>COMMON Nstreams=3 >RECORDERS default_rec >OSTREAMS default_s
tr path=/scratch

However, for sake or readability, it is recommended to place tags at the beginning
of separate lines, as in the examples quoted earlier. Indents, tabs, new lines and
comments can be used freely to ease the reading.

The comments are introduced by a hash “#” and an exclamation mark “!”
characters. Their use is illustrated by Listing 10.4. The lines with “#“ as the first
non-blank character are purely commentary. An exclamation mark begins an
inline comment spanning the rest of the line, while the combination “!\” begins a
long comment which extends to the end of line containing the terminating symbol
“\!”.

Backslash ” \” can be optionally used as a line-continuation sign, though the syntax
does not require it. The rest of the line after a backslash is ignored and can be used
for inline comments, like with the “!”.

All meaningful items in the configuration files are case-sensitive.
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 173
10.5.2.5 The configuration file structure

All tags, together with their attributes, must be grouped into three sections similar
to the “roles” in the DATE roles database:

• common section: the structural tag >COMMON itself and its attributes.

• recorder section: the structural tag >RECORDERS and the name tags listed
after it. By a recorder we mean an instance of the MSR running on a given
GDC. The name tag defining a specific recorder must be identical to the GDC
name, defined in the DATE roles database (see, for example, Listing 4.3).

• output stream section: the structural tag >OSTREAMS and the name tags
listed after it. All varieties of stream configurations needed for all GDCs are
described here. These configurations are instantiated by stream attributes
appearing in recorder tags.

Within each section, the tags may appear in any order. The sections >COMMON,
>RECORDERS and >OSTREAMS may also appear in any order within the
configuration file, but the important requirement is that they must all be present.
For the common section this simply means that the tag >COMMON must be present
(with or without attributes). As to the recorder and stream sections, each of them
must contain the corresponding structural tag (without any attributes) and at least
one default tag definition:

• default_rec tag, describing the default recorder, must appear in the recorders
section. All rules for recorder definitions apply to it. Its main purpose is to
provide the configuration for the GDCs which are not explicitly defined in the
recorders section. In particular, if all GDCs are equal, default_rec can be the
only recorder defined, as shown in Listing 10.1, Listing 10.2 and Listing 10.3.

• default_str tag, describing the default stream, must appear in the streams
section. The attribute “stream=default_str” is automatically added to any
recorder tag having no stream attributes specified explicitly or implicitly (via
copying). This feature is illustrated by Listing 10.1. If all streams in the system
have the same properties, default_str can be the only stream defined.

Thus, there are five tags which must appear in any MSR configuration file.

10.5.2.6 Scopes of attributes and rules of precedence

All attributes used in MSR are listed in Table 10.1 and described in more detail in
Section 10.5.3. Each of them (except the syntax-level copy attribute) defines a
certain property or parameter of the object it qualifies. The attributes appearing in
>COMMON apply to all recording streams and all recorders. The attributes appearing
in a specific (recorder or stream) tag definition apply only to that definition and
the ones derived from it. For example, the stream attribute fsize in the tag
pcaldXXgdc in Listing 10.4 applies only to streams created for this recorder,
including the instance of the default stream; it is not propagated to instances of the
default stream for other recorders. The exceptions are the default recorder and
stream, defined by default_rec and default_str tags: their attributes provide
default values for other recorders and streams.
ALICE DAQ and ECS manual

174 Data recording
�

 10.1 Attributes in MSR configuration filesTable

Attribute key Type Default valuea Property
ofb

Description

 path char* none (obligatory) S(R,C) path of output file

 stager char* “stagepublic” S(R,C) CASTOR stager host name

 pool char* “public” S(R,C) CASTOR pool name

 fsize int 256 S(R,C) max file size (Mbytes)

 nevents int 0 (no limit) S(R,C) maxnumber of events per file

 timing int 0 (no timing) S(R,C) timing logging

 timer_log char* “Stream_time.%R” S(R,C) timing log file

 sleep int 1 (minimal) S(R,C) stream polling latency

 mxrecl int 0 (no buffering) S(R,C) record length for buffered writing
(non-ROOT only).

 filename char* “%h_%R_%s_%f.data” S(R,C) output file name template

 root int -1 (no transcoding) S(R,C) ROOT recording mode

 compress int 0 (no compression) S(R,C) compression level

 filtermode int 0 (no filtering) S(R,C) 3rd level filtering

 maxtagsize double 2.e8 S(R,C) max size of tag DB (bytes)

 runDBFS char* “/tmp/meta%s” S(R,C) run DB path name

 tagDBFS char* “/tmp/tags%s” S(R,C) tags DB path name

 alienHost char* NULL (no AliEN DB) S(R,C) AliEN host [17]
reserved for future use

 alienDir char* NULL (no AliEN DB) S(R,C) AliEN directory [17]
reserved for future use

 method int 1 (equal load) R(C) dispatching method

 Nstreams int none (optional) R(C) forced number of streams

 stream char default_str R creates an instance of the named
stream

 (empty) char none (optional) R,S only copies attributes from another name

 use int none (optional) C forced recorder name

 loglevel int 1 (minimal) C log level

 dump int 0 (no dump) C to debug the config file

 run int none (optional) C forced run number in stand-alone
mode

 source char none (optional) C full name of the data source file in
stand-alone mode

 Nev float none (optional) C event limit in stand-alone mode

a. The built-in default value. The attribute without defaults are either obligatory (must appear in the configuration
file) or optional (no effect, if absent).
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 175
Most of the attributes qualifying streams may also appear in recorder and common
definitions. Similarly, the recorder attributes (except stream) may also appear in
the common section. An alternative placement of an attribute changes its scope and
significance. The attribute value assignment rules are given in Table 10.2. When a
“lower-level” attribute appears in a “higher-level” definition, its value overrides all
lower-level definitions. This feature makes the configuration file grammar more
flexible, permitting to affect an entire group of objects without touching the original
low-level definitions.

The built-in defaults (Table 10.1) have the lowest priority and are applied only if the
corresponding attributes are not specified, directly or indirectly, for a given stream.
The copy attributes are exercised at the syntax parsing stage, so the copied
properties are regarded as if they were explicitly specified.

The order of attributes within the tag definition matters only for stream-related
attributes in recorder definitions. In that case the last value preceding the
stream=X is applied to the instance of X. For example, fsize=255 in Listing 10.3
has no effect, as there are no stream attributes after it. In all other cases, when the
same attribute appears several times within a tag, the first value is taken.

b. The tag which an attribute qualifies (C= “>COMMON”, R=recorder, S=stream). Alternative attribute placements
are indicated in parentheses. The recommended attribute placement is shown in bold. Any attribute that can be
placed in >COMMON may also appear among command-line arguments.

Table 10.2 Rules of precedence for MSR attribute values

 priority
The effective value of the attribute A
for the stream S on recorder R is
retrieved from:

The effective value of the
attribute A for the recorder R
is retrieved from:

1 = highest
priority

command-line or >COMMON section
(e.g., sleep attribute in
Listing 10.4)

command-line or >COMMON
section

2 R tag in the >RECORDERS section:
the last occurrence of A attribute
preceding the corresponding
stream=S (e.g., filename for the
streams of recorder pcaldXXgdc
in Listing 10.4)

R tag in the >RECORDERS
section: the first occurrence
of A attribute in the tag
description

3 The first occurrence of A in the tag
S in >OSTREAMS section
(e.g., mxrecl and path for the
stream public in Listing 10.4)

The first occurrence of A in
default_rec

4 The first occurrence of A in
default_str (e.g., pool and
stager for all streams in
Listing 10.4)

The built-in default value
from Table 10.1

5 = lowest
priority

The built-in default value listed in
Table 10.1 (e.g., the timing attri-
bute for all streams in
Listing 10.4)
ALICE DAQ and ECS manual

176 Data recording
�

10.5.2.7 Summary

In summary, the MSR configuration file consists of tags and tag attributes, grouped
into three sections. The tags in the >RECORDERS section describe individual GDCs.
The tags in the >OSTREAMS section describe abstract output streams, instantiated
by stream attributes of recorder tags. The obligatory tags default_str and
default_rec describe the default stream and recorder, respectively. The >COMMON
section contains the attributes whose values are enforced globally. Almost all
attributes have built-in defaults which can be modified at different scope levels.
Multiple definitions are resolved using rules of precedence. The format of the
configuration file is free and may contain inline comments.

10.5.3 Description of the MSR configuration attributes

This sub-section describes how to specify the values of the MSR configuration
attributes, summarized in Table 10.1. Initially stored as text strings, these values are
interpreted according to their type at the semantic parsing stage. Most of them have
meaningful built-in default values. All attributes, except stream, can be specified
in the command line. In that case, they are prepended to the >COMMON section and,
therefore, have the highest precedence.

• path
The full pathname (without terminating “/”) of the directory which will
contain the output file. For CASTOR files it has to start with
“/castor/cern.ch”. This attribute is obligatory and must be specified for
any stream created by MSR. The specified pathname must have write
permissions for the owner of the MSR executables disp and stream, stored in
the directory ${DATE_MSTREAM_BIN} (they have SUID and SGID bits set).

• stager
The CASTOR [9] stager host name. MSR assigns the value of this attribute to the
CASTOR environment variable STAGE_HOST. By default, the CERN public
stager is used.

• pool
The CASTOR disk pool name. MSR assigns the value of this attribute to the
CASTOR environment variables STAGE_POOL and STAGE_SVCCLASS. By
default, the CERN public pool is used.

• fsize
The file size limit, in MB. The output file is closed when the actually written size
exceeds this limit (less a safety margin, for ROOT files).

• timing and timer_log
The detailed stream timing can be enabled for each output stream, by
specifying “timing=1”. The log will be written via infoLogger to the log
stream specified by the timer_log attribute (by default, “Stream_time.%R”,
common for all streams). The statistics (minimal, maximal and mean values, the
accumulated sums) are recorded at each file close for the following time
intervals: time spent while waiting for events from disp, write operations, time
between consecutive writes, file open and close latencies.

• sleep
The stream processes poll the dispatcher FIFO while waiting for the next event.
Whenever the FIFO is found to be empty, the stream executes usleep(s), where
“s” is the value of the sleep attribute. “sleep=0” turns sleeping off (not
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 177
recommended!) and any negative value enables the minimal possible non-CPU
consuming wait interval (10 ms or 20 ms, depending on the Linux platform).

• mxrecl
A non-zero value enables buffering for non-ROOT recording. The optimal value
should be found experimentally, as it strongly depends on running conditions
and the average event size. By default, buffering is disabled.

• filename
The output file name, see Section 10.5.2.3 for details. The filenames should
contain symbols identifying streams and sequential file numbers, to avoid
clashes. Such clashes are not detected by the MSR and might not even cause
run-time errors, but the data will be tacitly overwritten.

• root
A non-negative value enables ROOT recording and specifies the access protocol
for the raw DB created by the corresponding stream. The currently supported
values are: “0” (writing to a local filesystem, using class AliRawDB) and “3”
(writing to CASTOR via rootd daemon, using class AliRawCastorDB). The
values “1” and “2” are reserved for RFIO/CASTOR (using class
AliRawRFIODB) and plain ROOTd (using class AliRawRootdDB). For further
details about ROOT-related classes, refer to their description in the AliROOT
documentation [16].

The ROOT recording must also be enabled at the compilation level, by defining
the ROOTsys macro in the MSR GNUmakefile (Section 10.5.4). A non-ROOT
version of MSR will abort if a non-negative value of root is specified.

Using different ROOT recording modes for different streams, though possible
with MSR, is discouraged.

• compress, filtermode, maxtagsize, runDBFS, tagDBFS, alienHost and
alienDir
For the streams with the ROOT recording enabled, these attributes qualify the
ROOT recording mode and are transferred to the class AliMDC constructor (the
corresponding API function is reproduced in Listing 10.5). The special values
are:

• leading “-” in runDBFS and/or tagDBFS: the corresponding DB creation is
suppressed and its pathname is reset to NULL.

• “maxtagsize=0”: the tag DB creation is suppressed, tagDBFS is reset to
NULL.
ALICE DAQ and ECS manual

178 Data recording
�

• method
This attribute defines the dispatching method used by the corresponding
recorder to distribute the events between the streams. The value “1”
corresponds to the “equal-load” method and is assumed by default. The value
“2” corresponds to the “first-available” method which bypasses the busy
streams (having their buffer FIFOs almost full). Both methods are protected by
an internal time-out which may temporarily disable the overloaded stream(s).
The difference in performance for the two methods is marginal and strongly
depends on the running conditions.

• Nstreams
This attribute enforces the specified number of streams for the corresponding
recorder. By default, MSR creates as many streams, as there are stream
attributes in the recorder tag. If no stream attributes are present in that tag, one
default stream (defined by the obligatory default_str tag) is assumed. If the
value of Nstreams is less than the actual number of stream attributes listed in
the tag, then the trailing streams are discarded. Otherwise, the entire list is
iterated until the number of streams requested by Nstreams is reached.

• stream
This attribute creates an instance of the named stream for a given recorder. The
order in which stream attributes are listed within the same recorder tag may
be relevant for two reasons. First, if the effective value of the Nstreams for that
recorder is less than the number of its stream attributes, only the leading ones
are retained. Second, if it is desirable to modify the properties of streams
instantiated for a given recorder, all modifying attributes must proceed the
corresponding stream attribute (see, for example, the use of the filename
templates for the recorder pcaldXXgdc in Listing 10.4).

• use
This attribute can be placed in the >COMMON section to enforce the specified
recorder tag on all recorders. It overrides the default behavior of MSR which
determines the GDC hostname and picks the recorder tag with that name (or
the default_rec tag, if such tag is missing).

• loglevel

Listing 10.5 An API function used by the MSR to create an AliMDC object

1: include “AliMDC.h”
2: // creating AliMDC object for ROOT recording with MSR
3: void *alimdcCreate(
4: int compress,
5: int filtermode,
6: const char* runDBFS, //
7: Bool_t rdbmsRunDB, // =0 (MySQL run DB is disabled)
8: const char* alienHost,
9: const char* alienDir,
10: double maxtagsize,
11: const char* tagDBFS) {
12: return new AliMDC(compress,

 kFalse,
 AliMDC::EfilterMode(filtermode),
 runDBFS,
 rundbmsRunDB,
 alienHost,
 alienDir,
 maxtagsize,
 tagDBFS);

13: }
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 179
Defines the volume of status and diagnostic messages. When running in the
DATE mode, all messages from all disp and stream processes are sent to the
infoLogger, with the recorder and stream names prepended. Note, that the
detailed and debug levels of infoLogger are enabled only in a special
debugging version of MSR produced with the “_d_“ macro defined in the MSR
GNUmakefile (see Section 10.5.4).

Each recorder sends a single-line starting message to the runLog stream. All
subsequent messages go to the common dedicated log stream
(“LOGNAME = mStreamRecorder”). Fatal errors are reported with the FATAL
macro.

The timing logging (see the description of timing and timer_log attributes)
is not affected by loglevel.

• dump
This attribute is useful when composing or testing configuration files, especially
in the stand-alone mode. Its only effect is to produce a detailed dump of the
configuration tree structure immediately after the syntax parsing and write it to
stdout.

• run
This attribute can be placed in the >COMMON section to override the run number
coming with the data. It is effective only in the stand-alone mode. If “run=0“ is
specified, MSR will stop after parsing the configuration file, without creating
any streams.

• source
The full name of the local source raw data file for the stand-alone (“replay”)
mode. This file can be created either directly by a GDC, or by MSR running with
DATE in the non-ROOT mode. If the source attribute is omitted in the
stand-alone mode, MSR will generate some meaningless dummy events which
are good only to test MSR in the non-ROOT mode. For consistent testing, a
short sample raw data file ${DATE_MSTREAM_DIR}/sample_source.dat
can be used.

• Nev
Specifies the number of events to process in the stand-alone mode. By default,
MSR stops after processing all events in the source file (see source attribute).
If Nev is given, the source file is “replayed” (in a loop, if needed) until the
required number of events is reached.

10.5.4 How to build and run MSR

In order to build MSR components, run gmake in the ${DATE_MSTREAM_DIR}
directory containing the MSR source codes. The makefile GNUmakefile puts MSR
libraries and executables into the directory ${DATE_MSTREAM_BIN}. Check that
the executable files disp, stream and cleanup have the “s” bits set and the
owner of these files has a write-access to the directories that MSR will be writing to.
The makefile has internal variables-switches to control the makefile execution
and/or to create functionally different versions of MSR:

• EB=1 produces the “DATE” version reading from the eventBuilder and
reporting to infoLogger; EB=0 produces the “stand-alone” version reading
from a pre-recorded file, reporting to standard output and independent of any
ALICE DAQ and ECS manual

180 Data recording
�

DATE components, except simpleFifo.

• ROOT=1 produces the ROOT-aware version using AliROOT API. The
pathnames ${ROOTSYS} (the ROOT installation directory) and ${ALIROOT}
(the AliROOT directory), required for the ROOT version, are defined within the
makefile. ROOT=0 produces the version stripped of all ROOT-related features
and independent of any ROOT resources.

• DEBUG=1 produces the debugging version of MSR. Currently, its only
difference from the standard version (produced with DEBUG=0) is that the code
to produce the detailed and debug level of logging messages (see the
loglevel attribute) is included only in the debugging version of MSR. In
future, the standard version can be further optimized by delegating some error
checks to the debugging version.

• HC=1 for the DATE version replaces the default reporting to infoLogger with
printing to the standard output, like in the stand-alone version (this applies also
to timing logs, see the timer_log attribute).

• SHARED=1 instructs the makefile to create shared MSR libraries and link MSR
correspondingly. With SHARED=0, static linking is performed. Note that all
ROOT libraries are always dynamically-linked, independently from that
switch.

• TRACE switch simply controls the makefile verbosity. TRACE=-1 retains the
default gmake output. TRACE=0 is equivalent to “-s” option of gmake (any
output except for errors is suppressed). TRACE=1 prints a one-line header for all
actions the makefile performs (including the intrinsic compilation rules) and,
finally, TRACE=2 adds the action headers to the default gmake output.

These variables are assigned in the beginning of GNUmakefile as follows: EB=1,
ROOT=1, DEBUG=0, HC=0, SHARED=1 and TRACE=1. To modify the default
value(s), either edit the GNUmakefile and re-make MSR, or specify the alternative
assignment(s) as gmake arguments, for example:

gmake -W GNUmakefile DEBUG=1 SHARED=0

Note, that GNUmakefile itself is in the list of common dependencies for MSR, so
editing GNUmakefile (or giving its name in the “-W“ option) will force gmake to
re-compile the entire MSR.

Before running MSR, one has to prepare the configuration file. By default, MSR
uses the name ${DATE_SITE_CONFIG}/mStreamRecorder.config (or
./mStreamRecorder.config, if the DATE_SITE_CONFIG environment
variable is undefined). Using command-line options, an alternative filename can be
specified as shown below. At Point 2, a special syntax is used to handle global
templates and partition-specific configuration files (see Section 10.5.2).

The standard way to run MSR together with DATE is by using the DATE
runControl Human Interface (Section 14.5). Before starting processes:

• set recordingDevice to “:” in the “GDC configuration” menu.

• check “Recording enable” and “Recording to PDS” options in the main
menu.

To run the stand-alone version of MSR, enter a fully specified name of the disp
executable, with optional arguments. Apart from any number of the configuration
attributes, two options, “-v“ and “-f”, can be specified in the command line. The
ALICE DAQ and ECS manual

Recording with the Multiple Stream Recorder 181
“-v” option will cause disp to get loaded and print the MSR version number and
properties. The “-f” option followed by a full filename specifies the configuration
file to be used. A few examples are given in Listing 10.6. Note, that the
configuration attributes specified in the command line have the highest priority
and override the corresponding values in the configuration file (see Table 10.2).

Line 1 shows an example of a “replay” run with a custom configuration file. It
shows that the data source filenames may contain meta-characters. Line 2 shows a
replay of the standard MSR sample file. Line 3 tests the version of the disp
program. Line 6 shows that the stream program version can also be tested. This is
also a way to test-load the stream process. Line 9 shows how to test a
configuration file. The file will be fully parsed by disp and the streams for the
recorder running on thatGDC defined in this file will be prepared, with all their
parameters printed out. However, the actual streams will not be created and the
execution will stop at that stage, because of the “run=0“ attribute. The MSR tool
application test_config (see Line 10) performs the same actions. Its advantage is
that it does not depend on any external resources, like DATE or ROOT libraries.

Listing 10.6 Examples of starting MSR in the stand-alone mode

1: ./Linux/disp -f my.config Nev=1.e6 run=287 source=/scratch/%h.dat
2: ${DATE_MSTREAM_BIN}/disp

source=${DATE_MSTREAM_DIR}/sample_source.dat
3: ./Linux disp -v
4: disp build IM 050505; debug version; EB;
5: ROOT (linked with

ROOTSYS=/adcRoot/ROOT/Linux/CurrentRelease/root)
6: ./Linux/stream -v
7: stream build IM 050505; EB;
8: ROOT (linked with

ROOTSYS=/adcRoot/ROOT/Linux/CurrentRelease/root)
9: ./Linux/disp -f test.config use=thatGDC dump=1 loglevel=2 run=0

10: ./Linux/test_config test.config use=thatGDC
ALICE DAQ and ECS manual

182 Data recording
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
11
The infoLogger
system

A data-acquisition setup can consist of many nodes, each of them possibly
running several DATE processes. For development and operation, it is needed to
know how the distributed components behave, and what happens on the different
machines. The DATE infoLogger package provides facilities to generate,
transport, collect, store and consult log messages. This chapter describes how the
infoLogger works and how to use it.

11.1 Introduction. 184

11.2 infoLogger configuration . 184

11.3 The infoLogger processes . 185

11.4 Log messages repository . 187

11.5 Injection of messages . 188

184 The infoLogger system
�

11.1 Introduction

The infoLogger system provides facilities to send, collect and browse log
messages created by DATE components and user processes on different machines.

Figure 11.1 shows the overall architecture of the infoLogger system. A process
calling a function of the infoLogger library sends the message to the local
infoLoggerReader daemon. This process collects all the messages of the node
where it runs, and sends them to a central infoLoggerServer daemon, which
stores the received messages in a MySQL database. If at some point the
transmission chain is broken, the messages are written to disk to avoid losing them.
The infoBrowser user interface allows to read messages, either stored in the
database or received online by the central server.

Figure 11.1 The DATE infoLogger architecture

11.2 infoLogger configuration

The connection parameters between the different processes are stored in the
MySQL configuration database and should be defined with editDb (see
Section 4.5) in the environment variables section. Table 11.1 describes the variables
required.

Process API

Local host

infoLoggerReaderUnix socket

TCP/IP

Central server

infoLoggerServerDBinfoBrowser

Console

HDHD

TCP/IP

Process API

Local host

infoLoggerReaderUnix socket

TCP/IP

Central server

infoLoggerServerDBinfoBrowser

Console

HDHD

TCP/IP

Table 11.1 infoLogger configuration parameters - environment variables

Variable name Meaning

DATE_INFOLOGGER_LOGHOST Name of the host running the
infoLoggerServer process

DATE_INFOLOGGER_MYSQL_DB Name of the database to be used to store
log messages.
ALICE DAQ and ECS manual

The infoLogger processes 185
These environment variables are stored in the database configuration class named
infoLogger. They are created by default when installing the DATE database, and
loaded at runtime by the components (readers and server). They are not loaded by
the DATE setup procedure in the environment; the values are queried only when
starting the infoLogger processes.

Default socket port numbers for the communication between the processes are
defined in $(DATE_ROOT)/commonDefs/shellParams.common, with the
global environment variables DATE_SOCKET_INFOLOG_RX (reader to server) and
DATE_SOCKET_INFOLOG_TX (browser to server). They don’t need to be redefined.

The Unix named socket used to communicate between a log client and the local
reader is based on the value of $(DATE_SITE) and does not need to be defined.

DATE messages are stored in the specified database. MySQL infoLogger table
structure should be initially created, once configuration parameters are defined,
with the command /date/infoLogger/newDateLogs.sh -c.

In addition, some infoLogger related log files are created in
${DATE_SITE_LOGS} when needed, as described in Section 11.3. This variable is
set by default to ${DATE_SITE}/logFiles.

Please note that the verbosity of some runtime processes are defined by the
runControl run parameter named loglevel. The higher this integer, the higher
the verbosity of the processes. When used, this variable is handled by the processes
before any call to the infoLogger. Details about this parameter are described in
Chapter 14.

11.3 The infoLogger processes

The infoLogger components create some log files in the ${DATE_SITE_LOGS}
directory in addition to the DATE log repository. These files contain status
information, daemon error messages, and DATE log messages that could not be
transmitted. For performance reasons, these log files are opened only once by all
the infoLogger components. Therefore, you should first stop the infoLogger
daemons before removing these files. Because of the operating system
implementation, no error occurs on the daemons side if you remove the files while

DATE_INFOLOGGER_MYSQL_HOST Host running the database server. It is
recommended to have it on the same
machine as the infoLoggerServer.

DATE_INFOLOGGER_MYSQL_USER MySQL username to connect to the data-
base.

DATE_INFOLOGGER_MYSQL_PWD MySQL password to connect to the data-
base (with above user).

Table 11.1 infoLogger configuration parameters - environment variables

Variable name Meaning
ALICE DAQ and ECS manual

186 The infoLogger system
�

the daemons run. They will continue to write to the same files, which are not
accessible any more by the user and which will be destroyed when closed.

11.3.1 infoLoggerReader

The infoLoggerReader daemon is started automatically by the first process
using the DATE infoLogger library on a specific host. It listens to a Unix named
socket which name is based on ${DATE_SITE} (no configuration required), and
receives all log messages created on the node by the infoLogger library. Then
messages are sent to the central server, as defined by variable
DATE_INFOLOGGER_LOGHOST, on TCP port DATE_SOCKET_INFOLOG_RX using a
special protocol.

A control script, ${DATE_INFOLOGGER_BIN}/infoLoggerReader.sh, is
provided to start, stop, or restart it. DATE_SITE must be defined when invoking
the script.

The infoLoggerReader processes associated to a specific DATE_SITE can be
started and stopped remotely with the dateSiteDaemons script. It should be
used to restart infoLoggerReader after a change in the configuration (for
example a change of the host name where the infoLoggerServer is running,
etc.).

11.3.2 infoLoggerServer

The infoLoggerServer daemon runs on a central node, defined by the variable
DATE_INFOLOGGER_LOGHOST, and receives log messages sent by remote
infoLoggerReader processes. It stores messages in a MySQL database. It also
accepts connections on TCP port DATE_SOCKET_INFOLOG_TX where clients can
connect to get log messages as soon as they are received by the server, without
querying the repository.

The message order of insertion and delivery is not guaranteed, only the message
timestamp is reliable to order messages coming from a given machine. The
accuracy of clock synchronization is critical when correlating events from different
nodes, and it is not under the control of the DATE system.

A control script, ${DATE_INFOLOGGER_BIN}/infoLoggerServer.sh, is
provided to start, stop, or restart it. DATE_SITE must be defined when invoking
the script.

The infoLoggerServer process associated to a specific DATE_SITE can be
started and stopped remotely with the dateSiteDaemons script. It should be
used to launch infoLoggerServer before using DATE, or to restart
infoLoggerServer after a change in the configuration (i.e. database parameters,
node name, etc.).

11.3.3 infoBrowser

The infoBrowser process is a user interface to extract and display log messages
from the infoLogger system. A full description of it is given in the operations
section of the ALICE DAQ WIKI.
ALICE DAQ and ECS manual

Log messages repository 187
11.4 Log messages repository

Each DATE log message is made of several attributes:

• Severity: the information level of each message. This can be one of:

• Information: used for messages concerning normal running conditions.

• Error: when an abnormal situation has been encountered but execution
can somehow continue.

• Fatal: when an unrecoverable situation has been detected and normal
execution cannot be guaranteed. It usually causes the end of the current run.

• Timestamp: time of the message creation, with microsecond resolution, as
provided by the local operating system where the message is created.

• Host name: host where the message was created.

• Process ID: identifier of the process creating the message.

• User name: user running the process creating the message.

• System: system originating the message. For all DATE processes, this is set to
DAQ. This field is useful if the infoLogger facilities are shared with other
systems, like the ECS. It is defined by the value of the environment variable
DATE_INFOLOGGER_SYSTEM.

• Facility: the activity family, usually the DATE package name creating the
message. This can be for example readout, recorder, runControl, or
operator in case of a message coming from the command line.

• Stream: the log stream name the message belongs to. It is usually the name of a
detector (standalone operation) or of a partition (global runs).

• Run number: when available, the run number associated to the message. This
field can be undefined (empty value or -1). Most processes related to the
runControl set this attribute when logging messages.

• Message: the log information. It is a text string. End of line characters are not
allowed in a message. Multiple-line messages are split into different messages
(with the same other attributes).

Log messages, with all the associated information as described above, are centrally
collected for the whole DATE system, and stored in a repository. Two
implementations of the repository are available: the infoLoggerServer can
either write to a flat file or to a MySQL database.

Some tags have a maximum string length allowed in the MySQL version of the
repository. These limits are defined in the file
${DATE_INFOLOGGER_DIR}/newDateLogs.sh.

11.4.1 MySQL database

Messages are stored in a table named messages, which columns correspond to the
log fields previously described. The MySQL database connection parameters and
infoLogger tables should be initially created as described in Section 11.2.
ALICE DAQ and ECS manual

188 The infoLogger system
�

11.4.2 Archiving

Messages received by the infoLoggerServer are stored in the messages table
in the MySQL database. It is important to archive older messages to optimize the
resources used to insert, browse or process log information in the main table. The
quantity of information stored in the main table is also limited by the maximum file
size allowed by the file system.

A utility is provided to manage the amount of logs over time:

• ${DATE_INFOLOGGER_DIR}/newDateLogs.sh -d

Deletes all messages in the main table (but not the archives).

• ${DATE_INFOLOGGER_DIR}/newDateLogs.sh

This script, launched without option, creates an archive from the main table.
A new table (or file) is created, whose name includes the current date and
time. All messages from the main table are moved to this archive.

It is recommended to delete regularly or archive the messages from the main log
table, for example with a regular cron job calling newDateLogs.sh script. Be sure
that DATE_SITE is defined when this script is called.

Log information stored in archived tables is still available to the infoBrowser.

11.4.3 Retrieving messages from repository

The infoBrowser interface is the best tool to browse and display information
stored in the log repository. It includes filtering and searching capabilities, and
allows to export data to a text file. The full description of the infoBrowser is
given in the operations section of the ALICE DAQ WIKI.

A simple data extraction tool, ${DATE_INFOLOGGER_DIR}/getLog.sh, is also
provided to extract information from the main table to stdout, independently
from the repository type. This script can also output logging information in the
format of the DATE system version 4, and select data from a specific stream. Call it
with -h option to get details on usage. This output can then be piped to awk or
grep, when looking for specific messages.

Users familiar with SQL can also query directly the messages table.

11.5 Injection of messages

Any process running on any DATE host can use the infoLogger system to
transfer debug, information and error logs. Messages can be injected into the
logging system using the command line tools, or with the APIs provided (C and
Tcl). The DATE setup procedure must have been executed before launching any
process using the infoLogger library.
ALICE DAQ and ECS manual

Injection of messages 189
All inserted messages must be native strings. If the message tag contains carriage
returns, the message is split into several log messages with the same remaining
tags.

When necessary, it is possible to copy messages injected in the infoLogger system
to stdout by setting the environment variable DATE_INFOLOGGER_STDOUT to
TRUE. It can be useful for interactive tools.

Note that the stream is set automatically at run time by the runControl,
therefore it should not be set manually to other values.

11.5.1 Logging from the command line

A set of executables allows to inject messages from the command line or from
scripts. These tools are located in the ${DATE_INFOLOGGER_BIN} directory. For
details on their usage, invoke them with the -? command line option. The DATE
setup procedure must be executed before using these programs.

• log

Log a given message. Severity and facility may be provided.

• logTo

Log a given message to a given stream. Severity and facility may be
provided.

• logFromStdin

Read messages from standard input. Messages are strings delimited by end
of line character. It is possible to pipe the output of a program into this
utility to have it injected into the log system. Severity, facility and stream
may be provided.

Unless otherwise specified, the facility tag is set to operator, and the destination
stream tag is set to defaultLog.

11.5.2 Logging with the C API

This section describes the macros and the methods available for programs written
in C. A set of primitives are defined for the programmer in the header file
${DATE_INFOLOGGER_DIR}/infologger.h.

A C program by default sends messages tagged with Facility set to the package
name (for DATE packages) or with the image filename (for non-DATE packages).
This behavior can be changed by setting the C preprocessor variable
LOG_FACILITY to the desired value. This must be done before including the
infoLogger.h file, e.g.:

Unless otherwise specified, the destination stream tag is set to runLog.

Listing 11.1 Setting the Facility name in C programs

1: #define LOG_FACILITY “myFacility”
2: include “infoLogger.h”
ALICE DAQ and ECS manual

190 The infoLogger system
�

Compilation of C programs require the inclusion of the file infoLogger.h. The
linking with the library libInfo.a is also needed. Once the DATE setup
procedure has been executed, a command to build the program is

gcc myProgram.c -I${DATE_INFOLOGGER_DIR} \
${DATE_INFOLOGGER_BIN}/libInfo.a

By default, a connection to the infoLoggerReader process is opened (and the
daemon launched if necessary) when the first log message is created. It remains
open during the life of the process. To explicitly open/close this connection, the
functions infoOpen() and infoClose() can be used.

Additional functions calls exist which allow printf-like arguments, avoiding thus
the need of a local buffer to prepare the message when variables values have to be
included.

infoOpen

C Synopsis #include “infoLogger.h”
void infoOpen(void)

Description Opens the connection to infoLoggerReader. Its usage is optional: this function is
called automatically when logging the first message. If the socket is not found, the
infoLoggerReader is started.

infoClose

C Synopsis #include “infoLogger.h”
void infoClose(void)

Description Closes the connection to the infoLoggerReader. Its usage is optional.

infoLog_f

C Synopsis #include “infoLogger.h”
void infoLog_f(const char* const facility, const char
severity, const char* const message, ...)

Description The specified message is injected into the infoLogger system, in the default log
stream, with the given severity and facility.

message is a string as accepted by printf. Additional parameters can be
provided for string formatting. This avoids buffering a message that includes
variable values.
ALICE DAQ and ECS manual

Injection of messages 191
infoLogTo_f

C Synopsis #include “infoLogger.h”
void infoLogTo_f(const char* const stream, const char* const
facility, const char severity, const char* const message, ...)

Description The specified message is injected into the infoLogger system, in the given log
stream, with the given severity and facility.

message is a string as accepted by printf. Additional parameters can be
provided for string formatting. This avoids buffering a message that includes
variable values.

LOG

C Synopsis #include “infoLogger.h”
void LOG(char severity, char *message)

severity can be one of:
LOG_INFO
LOG_ERROR
LOG_FATAL

Description The specified message is injected into the infoLogger system, in the default
runLog stream, with the given severity.

LOG_TO

C Synopsis #include “infoLogger.h”
void LOG_TO(char *stream, char severity, char *message)

severity can be one of:
LOG_INFO
LOG_ERROR
LOG_FATAL

Description The specified message is injected into the infoLogger system, in the given log
stream, with the given severity.

LOG_ALL

C Synopsis #include “infoLogger.h”
void LOG_ALL(char *stream, char severity, char *message)

severity can be one of:
LOG_INFO
ALICE DAQ and ECS manual

192 The infoLogger system
�

LOG_ERROR
LOG_FATAL

Description The specified message is injected into the infoLogger system, both in the default
runLog stream and in the given log stream, with the given severity.

INFO

C Synopsis #include “infoLogger.h”
void INFO(char *message)

Description The specified message is injected into the infoLogger system, in the default
runLog stream, with Info severity.

ERROR

C Synopsis #include “infoLogger.h”
void ERROR(char *message)

Description The specified message is injected into the infoLogger system, in the default
runLog stream, with Error severity.

FATAL

C Synopsis #include “infoLogger.h”
void FATAL(char *message)

Description The specified message is injected into the infoLogger system, in the default
runLog stream, with Fatal severity.

INFO_TO

C Synopsis #include “infoLogger.h”
void INFO_TO(char *stream, char *message)

Description The specified message is injected into the infoLogger system, in the given log
stream, with Info severity.
ALICE DAQ and ECS manual

Injection of messages 193
ERROR_TO

C Synopsis #include “infoLogger.h”
void ERROR_TO(char *stream, char *message)

Description The specified message is injected into the infoLogger system, in the given log
stream, with Error severity.

FATAL_TO

C Synopsis #include “infoLogger.h”
void FATAL_TO(char *stream, char *message)

Description The specified message is injected into the infoLogger system, in the given log
stream, with Fatal severity.

INFO_ALL

C Synopsis #include “infoLogger.h”
void INFO_ALL(char *stream, char *message)

Description The specified message is injected into the infoLogger system, both in the default
runLog stream and in the given log stream, with Info severity.

ERROR_ALL

C Synopsis #include “infoLogger.h”
void ERROR_ALL(char *stream, char *message)

Description The specified message is injected into the infoLogger system, both in the default
runLog stream and in the given log stream, with Error severity.

FATAL_ALL

C Synopsis #include “infoLogger.h”
void FATAL_ALL(char *stream, char *message)

Description The specified message is injected into the infoLogger system, both in the default
runLog stream and in the given log stream, with Fatal severity.
ALICE DAQ and ECS manual

194 The infoLogger system
�

LOG_NORMAL_TH
LOG_DETAILED_TH
LOG_DEBUG_TH

Description The symbols define the thresholds for message generation. Messages may be
injected into the infoLogger system depending on the logLevel run parameter.
Refer to Section 14.11 for more details on this convention. The corresponding
values are defined in infoLogger.h.

11.5.3 Logging with the Tcl API

A subset of the C API can be called directly from Tcl scripts. The list of accessible
functions is given in ${DATE_INFOLOGGER_DIR}/infologger.i.

It includes, in particular, the infoLog and infoLogTo functions described in
Section 11.5.2.

To use the library, load the module at the beginning of the Tcl script:

load $env(DATE_INFOLOGGER_BIN)/libInfo_tcl.so infoLogger

Then, call the infoLogger functions with the same arguments as defined in the C
interface:

infoLog “my facility” “I” “This is an information message”
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
12
The
eventBuilder

The DATE eventBuilder is the software package running on a Global Data
Collector (GDC), receiving data from several Local Data Concentrators (LDC),
assembling the data into single events and recording them to the output stream.

This chapter includes a description of the event-builder architecture and describes
how sub-events are identified as belonging to the same event and how they are
built as a single event.

This chapter describes also how the eventBuilder uses some of the other DATE
packages such as the runControl and the infoLogger.

12.1 Overview . 196

12.2 The event-builder architecture 196

12.3 Data buffers . 198

12.4 Consistency checks on the data. 199

12.6 The control of the eventBuilder. 200

12.7 Information and error reporting 200

12.8 Configuration. 200

196 The eventBuilder
�

12.1 Overview

The DATE eventBuilder is a software package responsible for merging together
several streams of sub-events data originated from different readout subsystems
into a single stream of events. This stream can be directed to the appropriate
recording device or - using a memory-mapped scheme - to the next processing
stage (filtering, compression, special recording).

A DATE data-acquisition system is composed of one or several parallel readout
streams. Each of these stream(s) is carrying the data produced by the front-end
electronics of one detector or part of it. This front-end electronics of each stream is
controlled and readout by one processor called the Local Data Concentrator (LDC).

The event building is performed by processors called the Global Data Collector
(GDC). The sub-events are transferred from the LDCs to the GDCs using the socket
library of TCP/IP. The transfer is executed by the DATE recorder process
running on the LDC when it is configured to use a GDC as output device.

The sub-events are received by the eventBuilder which - according to the
directives given by the event-building database - creates the appropriate event and
forwards it to the following processing stage (recording or online transfer). The
output of the eventBuilder can be either recorded directly to one or more local
devices or sent to a further processing stage using fifos and memory buffers. Details
on the different recording schemes and their description can be found in
Section 10.4

The eventBuilder is running under the control of the DATE runControl
system from which it receives the commands to start and stop the run and the
parameters needed for a run. The infoLogger functions are used for normal and
exceptional messages and to report run statistics and descriptions.

12.2 The event-builder architecture

12.2.1 The data transfer from the LDC to the GDC

The LDC recorder program (see Section 10.3) writes data onto an output stream
whose name is given by the runControl. Amongst several possibilities, the
output stream can be a GDC machine where the eventBuilder is running. By
defining the output stream to be a GDC, the LDC becomes part of a multiple hosts
DAQ system.

When the run is starting, the LDC recorder program opens the output stream on
one TCP/IP socket of the GDC. The eventBuilder accepts the connection,
negotiates the socket parameters and, when the run is declared started by the
runControl system, begins to poll the channel for incoming data. Whenever new
data is available, this is accepted and stored in the event-builder data buffer. When
the event is completely readout, the eventBuilder takes the appropriate action.
Once the event is completed, it is moved either to the recording stage or to the next
processing stage, according to the configuration database.
ALICE DAQ and ECS manual

The event-builder architecture 197
If the eventBuilder runs out of memory, it stops accepting data from the LDC(s).
Thanks to the backpressure applied by the TCP/IP socket library, this stops the
recording process on the LDC(s) - at least for what concerns this particular
eventBuilder (if the recorder process has multiple channels active, recording
on the LDC can continue on other free channels).

12.2.2 The communication protocol between the LDC and the GDC

The communication protocol between the LDC recorder and the GDC
eventBuilder is based on the DATE data format (see Section 3.5). For each event
the following operations are performed:

• the eventBuilder reads the event header. On the basis of the event header,
the eventBuilder knows the event type, the event number and the event
length.

• the validity of the header is checked:

• magic word field and number of bytes effectively read compared to
standard header length. If the event header is incorrect, an error is issued to
the infoLogger and a special event header is created with the type
EVENT_FORMAT_ERROR.

• statistics are accumulated on the different event types.

• data is read into the eventBuilder data buffer. If the data is truncated, an
error bit (EVENT_DATA_TRUNCATED) is added into the event type.

The cycle is repeated until the run is declared closed and either the LDC closes its
channel or an abort (quick exit) sequence is started.

12.2.3 The communication protocol between the eventBuilder and the edm

The communication protocol between the eventBuilder and the edm is
unidirectional, from the eventBuilder to the edm. The messages exchanged are
two: EDM_MESSAGE_NEARLY_FULL and EDM_MESSAGE_NEARLY_EMPTY. Both
messages must be terminated by the character EDM_MESSAGE_SEPARATOR. All
these constants are defined in ${DATE_EDM_DIR}/edm.h. The communication
channel is set in asynchronous mode, therefore it is impossible to block the
eventBuilder (if the channel between the eventBuilder and the edm becomes
busy, the eventBuilder queues the messages that will be sent whenever the
channel becomes free again).

12.2.4 The event-building process

The process of building the event is based on the header of the incoming event and
from the directives recorded in the event-building control database.

The decision is always based on the eventType field of the event header. It can be
refined by the eventDetectorPattern field (the set of detector(s) selected to
readout the given event) or by the eventTriggerPattern field (the set of
trigger(s) active for the given event). The first rule that matches the event is
selected. The rule decides if the event should be built (the event includes all LDCs
ALICE DAQ and ECS manual

198 The eventBuilder
�

contributing to a given event) or not built (one LDC event per GDC event). If no
rule can be applied to a given event, the eventBuilder requests an end of run
with error condition.

If the detector pattern stored in the event header enables a subset of the detectors
included in the run, the eventBuilder will expect data only from those detectors.
Therefore a “full build” rule may become a “partial build” action whenever a
partial readout was performed.

When running with the HLT, the HLT response may be used to change the building
rule as the HLT response can enable or disable individual LDCs. The
eventBuilder takes the HLT response into consideration and changes the
event-building policy accordingly, expecting data only from those LDCs whose
readout has been enabled.

12.2.5 SOR/EOR records, files and scripts

The eventBuilder handles SOR and EOR records, files and scripts using the
same method used by readout.

Please note that hosts running both as LDC and as GDC transfer the same files and
execute the same scripts (common and specific) twice, once as LDC and once as
GDC. SOR and EOR scripts can differentiate their actions by testing the
environment variable ${DATE_HOST_ROLE} (which is set to “ldc” if the script is
being called by the readout process and to “gdc” if the script is being used by the
eventBuilder process).

12.3 Data buffers

The eventBuilder must be able to perform its main function: to put together
sub-events belonging to the same event. To do this, it must ensure to have enough
memory available for each LDC to build at least one event.

The eventBuilder is given statically one memory bank. This bank is dynamically
partitioned into two sections: the per LDC section and the public section. The per
LDC section is further partitioned into one sub-section for each of the LDCs
connected at start of run. The public section is available to all LDCs.

The partition between public and private pools is done using compilation-time
configuration parameters and run-time dymanic parameters. The actual values and
the usage of all pools is available as a statistics record sent via the logBook stream,
as described in Section 12.7.3.

The eventBuilder refuses to run if the available memory is too small to allocate a
minimum number of events. The check is made at start of run time using the
maximum event size as declared by the run control for the LDCs connected to the
eventBuilder. If the available memory is not sufficient, the eventBuilder
sends an appropriate error message and requests an end of run with error. It is then
up to the data-acquisition system administrator to provide bigger memory buffers,
as requested by the eventBuilder via the eventBuilder stream.
ALICE DAQ and ECS manual

Consistency checks on the data 199
The event-builder data buffer can be implemented using any of the available
supports. This includes the process HEAP; note that, in this case, allocation is
performed once at start of run time (and not on demand) and that the only possible
recording option is direct recording (events cannot be shared with post-processing
stages as memory transfer is impossible). BIGPHYS/PHYSMEM are also allowed
and may actually perform better than IPC seen the different approach of the
operating system between the two methods (less overheads, no swapping, less
conflicts, different resources).

When post-processing is requested, the eventBuilder must be given space for its
ready fifo. This can be done either by declaring a bank dedicated to all
eventBuilder resources or by using two banks, one for
eventBuilderReadyFifo and the second for eventBuilderDataPages. The
second method ensures a better tuning of the two resources and eventually allows
the use of two different support methods(e.g. IPC for the
eventBuilderReadyFifo and PHYSMEM for the eventBuilderDataPages).

12.4 Consistency checks on the data

The eventBuilder checks the data that is sent to it. This operation can reveal fatal
errors originated in the readout electronics or readout software. In case of error, this
is signaled through the infoLogger and the eventBuilder requests the run
control to stop the run. Furthermore, a rule of the event-building database must
match every given event. This rule can specify a subset of detectors (either directly
or indirectly via the eventTriggerPattern and eventDetectorPatterns
fields) in which case all LDCs belonging to the subset must contribute to the event.
If no subset is specified, all LDCs are supposed to contribute to the event with a
(possibly empty) sub-event.

12.5 ALICE events emulation mode

The eventBuilder can run is a special ALICE events emulation mode. Target of
this special function is to emulate as close as possible to the behavior of a
production GDC when running in ALICE production. When this mode is selected,
the data from each LDC is taken individually and unpacked as if it would come
from several LDCs. The payload of the event must contain a real ALICE event, with
one event header (coming from a GDC) and one or more events headers,
equipment headers and payload. All this can be either built or extracted as is from
an event recorded during a previous run. The result of this operation is an event
that closely looks like its equivalent produced by the original LDCs (the only
differences are the event ID, the event timestamp and the fact that the event data
comes from consecutive memory blocks rather than from several scattered memory
locations). The event-builder refuses payloads that do no match this structure and
aborts the run with error as soon as this happens.

This special running mode can be selected by setting the environment variable
DAQ_EMULATE_ALICE_EVENTS to the value 111. This can be done either by
ALICE DAQ and ECS manual

200 The eventBuilder
�

asserting a DAQ-wide variable or by going machine by machine. Special care must
be taken not to use this mode in production setups (even though the event-builder
will most likely abort the run due to the inconsistent format of the event payload).

12.6 The control of the eventBuilder

The eventBuilder is running under the control of the runControl system. In
the GDC, the rcServer process is responsible for maintaining the control shared
segment and for allocating the required memory buffers at start of run time.

The eventBuilder cannot control detached processes (such as a post-processing
stage). As for any other DATE process, this function must be delegated to the DATE
runControl system.

12.7 Information and error reporting

12.7.1 Usage of the infoLogger

The eventBuilder uses the DATE infoLogger package (see Chapter 11) to
report statistics, information and error messages.

12.7.2 Run statistics update

The eventBuilder updates regularly the information stored in the ALICE
LogBook using the statistics update routines which are part of the DATE LogBook
package (see Section 24.3).

12.7.3 End-of-run messages

At the end of the run, the eventBuilder updates the run log with run statistics,
warning and error messages. Run statistics include memory usage, timers,
counters, event-building rules usage, per LDC counters and run-time
performances.

12.8 Configuration

The eventBuilder should be configured statically (event-building rules, memory
banks) and dynamically (run control).

The event-building static configuration is described in Section 4.3.5.
ALICE DAQ and ECS manual

Configuration 201
For the memory banks, the eventBuilder must have a data buffer of sufficient
space to be able to perform its function. The declaration should be done as
described in Section 4.3.6. Please note that the maxEventSize parameter for the
eventBuilder does not apply to the events coming from the LDCs: here the
individual maxEventSize (as declared for each of the LDCs) applies both for
configuration purposes and for run-time checks. Only the events created by the
eventBuilder itself (e.g. SOR records, SOR files etc...) use the maxEventsSize
parameter.
ALICE DAQ and ECS manual

202 The eventBuilder
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
13
The event
distribution
manager

This chapter describes the DATE Event Distribution Manager software package
(EDM). The event distribution is the process of distributing all the sub-events
produced by the same trigger to a single destination machine (GDC). It allows a
smooth GDC load balancing and consists of three different processes, two of which
are running on each LDC and one is running on a machine, called edmHost.

The next pages include a description of the event distribution manager architecture
and describe the edmAgent and the edmClient processes in the LDC, as well as
the edm process in the edmHost. These processes are needed to activate the event
distribution mechanism towards the event builder software running in the GDC
machines.

13.1 Overview . 204

13.2 The EDM architecture . 205

13.3 The synchronization with the run control 210

13.4 Information and error reporting 210

204 The event distribution manager
�

13.1 Overview

The DATE event distribution manager (EDM) is a software package responsible for
the distribution of the parallel readout streams coming from the different LDCs and
belonging to the same trigger, called sub-events, to a single destination machine,
called GDC. On the GDCs, the event builder package is responsible for building the
sub-events to form a single event, defined as the collection of data pertaining to the
same particle collision. In a DAQ system there may be several GDCs performing
event building functions, all connected to the same switching network, supporting
TCP/IP protocol, to which all the LDCs and the edmHost machine are also
connected. The EDM system allows the distribution of sub-events across the GDCs,
all the physics and calibration events being randomly distributed to all GDCs
regardless of the trigger class they belong to. Special event types, such as
START_OF_RUN, START_OF_RUN_FILES, END_OF_RUN, END_OF_RUN_FILES,
START_OF_BURST, END_OF_BURST are always sent to the first GDC which
declared itself to the edm process. No sub-events are broadcast to all the GDCs. The
actual transfer of sub-events is executed by the recorder process (see
Section 10.3) in the LDC, when it is configured to use one or multiple GDCs as
output device. The choice of the destination GDC is taken following the
instructions given by the edm process. This mechanism permits a smooth GDCs
load balancing and makes it possible to adapt at run-time the data flow to the
capabilities of the GDCs. It excludes from the system the GDCs which are too
overloaded and puts them back as soon as they are free. In a similar way, if a GDC
goes down for whatever reason, the data acquisition does not stop, but simply
removes this GDC from the list of possible destinations for the sub-events, thus
avoiding hang-ups in the data-acquisition system. As soon as the GDC is up and
running again, it is re-inserted in the list of possible destinations for the sub-events.

The user can choose to perform a run with or without the EDM software by means
of the checkbutton labelled EDM in the run control main window. In a system where
only one GDC is available, it does not make any sense to activate the EDM
software. In case the EDM checkbutton is not selected, the run control does not start
any edm related process. In this case, the event distribution algorithm is performed
by the readout process (see Section 6.1) running in the LDCs through a simple
scheme of sub-event distribution in a round-robin fashion, independent of any
distributed knowledge about the GDC status. The destination GDC for each event
is set in the field eventGdcId of the event header, based on the total number of
GDCs and on the eventId of the sub-event. The dispatch algorithm uses the
eventId field which is mapped to an actual GDC by means of a hash table, whose
function is to avoid periodicities introduced by non-uniform distribution of the
eventId field. The same mechanism, combined with the availability of the GDCs,
is also used by the EDM via a library shared between the readout and the EDM
packages .

The EDM software is running under the control of the runControl system (see
Chapter 14) from which it receives the commands to start and stop the run and the
parameters needed for a run. The infoLogger functions (see Chapter 11) are used
to report messages.
ALICE DAQ and ECS manual

The EDM architecture 205
13.2 The EDM architecture

The EDM architecture in shown in Figure 13.1

The EDM software includes the three following processes, launched by the run
control:

• the edm in the edmHost.

• the edmAgent on each LDC.

• the edmClient on each LDC.

The edm process keeps track of the list of available GDCs. It receives the status of
each GDC from the eventBuilder process, which sends the following messages
to the edm:

• nearly full: this message declares the GDC on which the eventBuilder is
running as unavailable, therefore to be removed by the edm from the list of
available GDCs.

• nearly empty: this message declares the GDC on which the eventBuilder is
running as available, therefore to be added by the edm to the list of available
GDCs.

The threshold in percentage below which the event builder sends the message
“nearly empty” and the one above which the eventBuilder sends the message
“nearly full” can be chosen for each run via the ebNearlyEmpty and
ebNearlyFull run parameters.

The edm builds a GDC availability mask, which contains the list of available
GDCs, the first and the last eventId for which the mask is valid, respectively called
firstEventId and lastEventId. To calculate these two eventIds, the edm uses
the edmInterval run parameter, which indicates the size of the validity range for
a mask, in units of eventId.

The structure of the GDC availability mask is the following:

Figure 13.1 The EDM architecture.

readout

insert
gdcId

LDC
edmAgent

update
gdcId

recorder

use
gdcID

GDC
eventBuilder

send
GDC status

sends gdcAvMask

request new gdcAvMask

edmFifoedmFifo

edmClient

write
gdcAvMask

edmClient

write
gdcAvMask

EDM
edm

update
gdcAvMask

EDM
edm

update
gdcAvMask
ALICE DAQ and ECS manual

206 The event distribution manager
�

struct edmMask_t {
 eventIdType firstEventId;
 eventIdType lastEventId;
 V32 mask [GDC_AVMASK_NGROUPS];
};

where mask is an array of 32 bit integers, as many as needed to accommodate the
highest bit corresponding to the maximum GDC identifier that has been declared in
the configuration data base (see Chapter 2).

The user has to configure the minimum fraction of GDCs that should be free for the
system to continue the run without waiting. This is done by means of the
edmQuorumPercent run parameter, which indicates the percentage of GDCs that
should be available before sending the GDC availability mask to all the LDCs. With
the exception of the first mask, sent at start of run, the edm sends the GDC
availability mask to all the LDCs only if the number of available GDCs is bigger
than the minimum quorum requested.

Since the edm process does not have any knowledge on the eventId of the sub-event
being processed in the LDC, it must be instructed by the LDCs when time has come
to send a new GDC availability mask. In order to reduce the dead time, the LDC
tells the edm to send a new mask in advance with respect to the last event ID for
which the previous mask is valid. The LDC signals to the edm that a new GDC
availability mask is needed when it reaches the bottom range of the validity for a
mask, which is set by the user as edmDelta run parameter. In practice the LDC
issues a request for a new mask when it is processing the event whose eventId is
equal or higher to lastEventId - edmDelta.

All the LDCs tag the sub-events with an increasing event ID, which is the same for
all the sub-events belonging to the same trigger and is recorded in the field
eventId of the event header. The monotony for the event ID is checked for all
sub-events of type PHYSICS_EVENT: each event ID must be higher than the event
ID of the previous sub-event. If this is not the case, an error message is issued to the
infoLogger and the readout process asks to stop the run.

In order to avoid TCP/IP socket connections in the LDC processes responsible for
the main data flow of the sub-events, the software in the LDC has been organized in
two separate processes: the edmClient and the edmAgent.

The edmClient is responsible for the TCP/IP communication with the edm. It
receives the GDC availability mask from the edm and it sends to the edm the request
to get a new GDC availability mask.

The edmAgent process running in the LDC takes a sub-event from the readout
FIFO (where it has been inserted by the readout process), reads the GDC
availability mask from the edm FIFO located in the shared control region in the
LDC and inserts in the header of the physics sub-event the destination GDC. Then
it passes the sub-event on to the recorder process for the actual dispatching of it
to the eventBuilder process on the destination GDC. Only event descriptors are
read and passed on: there is no memory-to-memory copy involved. The decision on
the destination GDC is taken by each LDC independently from each other, using
data-driven algorithm, based on the eventId field of the sub-event header. The
algorithm forbids sending sub-events to all the GDCs declared as unavailable by
the eventBuilder during the validity range of the GDC availability mask.
ALICE DAQ and ECS manual

The EDM architecture 207
The communication between the edmClient and the edmAgent process running
on the same LDC happens through flags in the shared control region and the edm
FIFO.

13.2.1 The edm process

The edm process is responsible for creating and maintaining the GDC availability
mask, as well as for sending it to all the LDCs participating in the run. When the
run is starting, the edm process waits for connection declarations. LDCs can only
connect once, because the run can’t continue if one LDC disconnects or breaks
down, while the GDCs can connect and disconnect at any time during the run.
When receiving the first connection request from an LDC or GDC, the edm
negotiates some socket parameters for the connections, adds the GDC to the list of
available GDCs and sets the first validity range of event IDs in the GDC availability
mask. Once all the LDCs and all the GDCs are connected, the edm begins to poll as
many channels as the number of GDCs and LDCs which participate in the run with
a timeout, specified by the user as edmPollTimeOut run parameter (expressed in
milliseconds). This allows the edm to periodically check for the arrival of end of run
or abort run commands.

The edm updates the GDC availability mask when:

• a GDC connects or sends the nearlyEmpy message: the edm adds it to the list
of available GDCs.

• a GDC disconnects or sends the nearlyFull message: the edm removes it
from the list of available GDCs.

Before sending the GDC availability mask, the firstEventId and the
lastEventId fields of the structure of type edmMask_t are updated as follows:

• firstEventId = lastUpperBoundSent + oneEventId

wherelastUpperBoundSent is the lastEventId field of the last mask sent, and
oneEventId is 1 event number (nbInRun) or 1 bunch crossing depending on
the mode of running (i.e. on the colliderMode run parameter).

• lastEventId = max (firstEventId, maxWakeUpId) + edmInterval

wherefirstEventId is the firstEventId field, calculated above, and
maxWakeUpId is the highest event ID for which a request for a new mask has
been received. Each request for a new mask is accompanied by the event ID of
the sub-event at which the LDC issuing the request discovers that it needs a
new mask.

With the exception of the first mask, which is sent when all the machines
participating in the run have connected to the edm, the edm sends the GDC
availability mask when:

• a wakeUp message is received from LDC(s) accompanied by the event ID for
which the request has been issued.

• a GDC connects and there was already a request for mask pending and the
quorum, not reached before, is now reached.

• when a GDC sends nearlyEmpty and there was already a request for mask
ALICE DAQ and ECS manual

208 The event distribution manager
�

pending and the quorum, not reached before, is now reached.

After sending the GDC availability mask, the following variables are saved in the
shared control region, so that they can be displayed by the run control status
display:

• lastThresholdSent = lastEventId - edmDelta

• lastUpperBoundSent = lastEventId

In order to avoid sending the mask for multiple wakeUp messages received by
different LDCs, and therefore increasing the network traffic, the actual sending of
the mask happens only if the event ID for which the request is made is higher or
equal than the last threshold sent, i.e. if the requested mask has not already been
sent.

The edm asks to stop the run if not all the LDCs are connected; this check is made
when the run is starting.

13.2.2 The edmClient process

In the initialization phase, the edmClient process connects to the edm, after
getting the port for the connection from the environment variable
DATE_SOCKET_EDM, negotiates the socket parameters for the connection, and
declares itself to the edm.

It then polls the input channel to receive the GDC availability mask from the edm.
After having performed some checks on its validity, it writes the GDC availability
mask in the LDC shared control region. It periodically checks on one side for run
control commands and on the other side for the value of the flag
wakeUpRequestFlag in the LDC shared control region to know whether it has to
send a request for a new mask to the edm.

The possible values of the wakeUpRequestFlag are:

• EDM_REQUEST_FLAG_REQ: set by the edmAgent when a new mask is needed

• EDM_REQUEST_FLAG_SENT: set by the edmClient after sending the request
for a new mask.

Each request for a new mask is accompanied by the event ID for which the request
is issued. This allows the edm to discard multiple requests of GDC availability mask
for the same validity range coming from several LDCs, which may happen since
not all the LDCs participate in all the events.

13.2.3 The edmAgent process

In the initialization phase, the edmAgent reads the first GDC availability mask
from the edmFifo in the control region. When the run is started, it takes every
sub-event descriptor from the readout process and performs some actions
depending on the event ID. There are three main cases:

1. The event ID is higher than the lastEventId field of the GDC availability
mask:
ALICE DAQ and ECS manual

The EDM architecture 209
• the edmAgent tries to get the new GDC availability mask from the
edmFifo.

• if a new mask is available in the emdFifo it uses it to set the destination
GDC and calculates the threshold of the current mask as

currentThreshold = lastEventId field - edmDelta.

• if a new mask is not available in the edmFifo, the edmAgent checks if the
request for a new mask is already pending, in which case it waits for the
new mask to be written in the edmFifo by the edmClient. The waiting
time expressed in microseconds as recMaskSleepTime.

• if there is no pending request for a new mask, the edmAgent checks
whether the LDC on which it is running is the one which has to issue the
request. In order to avoid that all the LDCs participating in the same trigger
issue a request for a new GDC availability mask, the following algorithm
has been implemented: only the LDC whose identifier is the lowest
identifier involved in the event instructs the edmClient to issue the
request.

• in case the request for a new mask is issued by setting the
wakeUpRequestFlag to EDM_REQUEST_FLAG_REQ in the shared control
region, in such a way that the edmClient process running in the same LDC
can do the actual request to the edm via the socket library.

• when the mask is available, it fills the eventGdcId field of the header with
the destination GDC, returned by the distribution algorithm.

2. The event ID is between the current threshold and the lastEventId field of
the GDC availability mask:

• if there is already a pending request, simply fills the eventGdcId field of
the header with the destination GDC, returned by the distribution
algorithm.

• if there is no request for a new mask pending and no mask is available in the
edmFifo, the edmAgent checks whether the LDC on which it is running is
the one which has to issue the request; given that is the case it issues the
request for a new mask just as in the previous case.

3. The event ID is smaller than the current threshold, just fill the eventGdcId
field of the header with the destination GDC, returned by the distribution
algorithm.

The cycle is repeated until the run is declared as stopped and either the edm closes
its channel or an abort (quick exit) sequence is started.

The edmAgent is performing various checks on the GDC identifiers of the GDC
availability mask (for example if the GDC identifiers are compatible with the ones
declared in the configuration database) and, in case of error, asks to stop the run.
ALICE DAQ and ECS manual

210 The event distribution manager
�

13.3 The synchronization with the run control

The EDM software is running under the control of the runControl system. The
run is declared as started only after the completion of the following sequence of
operations:

• all the GDCs and the LDCs declare themselves to the edm.

• the edm sends the first GDC availability mask to all the edmClient processes
running on the LDCs.

• the edmClient writes it into the edmFifo in all the LDCs.

• the edmAgent reads it from the edmFifo and sets it as the current GDC
availability mask in all the LDCs.

13.4 Information and error reporting

The EDM uses the DATE infoLogger package (see Chapter 11) to report statistics,
information and error messages.
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
14
The runControl

This chapter describes the architecture of the runControl system, its various
components, and their interactions.

14.1 Introduction. 212

14.2 Architecture. 212

14.3 The runControl process . 213

14.4 The runControl interface . 216

14.5 The runControl Human Interface 216

14.6 The Logic Engine. 216

14.7 The rcServers . 217

14.8 The RCS interface . 218

14.9 Run parameters . 218

14.10 Run-time variables . 224

14.11 Control of the log messages 228

14.12 Log Files. 228

212 The runControl
�

14.1 Introduction

Within a DAQ system, several data acquisitions can be performed at the same time:
this is the case, for example, of several detectors independently collecting
calibration data. Every data acquisition requires a configuration and the definition
of parameters and options. Moreover it is performed by several processes that must
be started and stopped at the right moment on many machines.

The runControl system handles the configuration and synchronization issues. It is
based on Finite State Machines and it uses packages external to DATE: DIM [3], a
Distributed Information Manager and SMI++ [4] are, in particular, heavily used.

14.2 Architecture

Every data acquisition, performed for one single detector or a group of detectors
defined by the Experiment Control System, is controlled by a runControl process
that steers the data acquisition according to operator commands. Several
runControl processes with different names can run at the same time and control
different data acquisitions.

Every runControl process has a runControl interface based on Finite State
Machines. This interface receives all the commands sent to the runControl
process and rejects those incompatible with the current status of the process. The
interface also guarantees that, at any time, the source of commands is unique. It
may be a given runControl Human Interface or a component of the
Experiment Control System (ECS), described in the second part of this manual.

For the same runControl process, many runControl Human Interfaces can
coexist, but at most one at a time can have the mastership of the runControl
process: this last one can be used to send active control commands, whereas the
others can only be used to get information. When the authorized source of
commands is the ECS, none of the runControl Human Interfaces can send
active commands: this possibility is restricted to the ECS.

When the list of machines to be used for a given data acquisition is defined, the
runControl process spawns a Logic Engine process. The Logic Engine
contains all the logic about starting and stopping the different processes on the
different machines. The Logic Engine translates operator commands into
sequences of commands that are then sent, in parallel, to the remote machines.

On every remote machine a process, called rcServer, can start and stop processes
according to commands received from the Logic Engines. The rcServer also
performs some local error handling and returns various counters and information
to the other DAQ machines. An rcServer can be used, at different times, by
different runControl processes and can therefore receive commands from
different Logic Engines in the context of different data acquisitions.

An interface, common to all the rcServers, guarantees that every rcServer is
used at any time by at most one runControl process and receives commands
ALICE DAQ and ECS manual

The runControl process 213
from one Logic Engine in the context of one and only one data acquisition. This
interface is called RCS interface.

The architecture of the runControl system is shown in Figure 14.1.

14.3 The runControl process

At startup time, a runControl process with name defined by the symbol RCNAME
performs the following operations:

• reads the detectors and roles DATE database, applying the following restriction:

• if ${RCNAME} does not start with the string "ALL", then ${RCNAME} is
treated as a detector name and the runControl process loads from the
DATE database the information about that detector only. For example, if the
name assigned to the runControl process is TPC, then the runControl
process loads information about the TPC and ignores the other detectors.

• if ${RCNAME} starts with the string "ALL", then ${RCNAME} is treated as
the potential name of an Experiment Control System partition prefixed with
ALL. In this case, if an ECS partition with that name exists, then the
runControl process loads informations about the detectors belonging to
the partition and ignores the other detectors. If an ECS partition with that
name does not exist, then the runControl process loads information about
all the detectors. For example, the name assigned to the runControl
process is “ALLITS”: if an ECS partition named ITS exists, then the
runControl process loads information about the detectors of the ITS
partition; if an ECS partition named ITS does not exist, then the
runControl process loads information about all the detectors.

Figure 14.1 The runControl system architecture.
ALICE DAQ and ECS manual

214 The runControl
�

• in both cases (i.e ${RCNAME} starting or not starting with the string “ALL”),
if the DATE database contains information about detectors named “HLT”
and “TRIGGER”, then the information about these detectors is loaded in
memory knowing that HLT and TRIGGER play special roles within the data
acquisition.

• sets the current DAQ configuration to an empty one, sets all the run parameters
to their DATE hardcoded defaults, and resets all the run options.

• if a default DAQ configuration has been saved in the DATE database, then the
default DAQ configuration is loaded and replaces the empty one. The name of
the default DAQ configuration in the MySQL database is DEFAULT.

• if a set of customized, default run parameters has been saved in the DATE
database, then the set of customized, default run parameters is used to
overwrite the DATE hardcoded defaults. The name of this set in the MySQL
database is DEFAULT .

• if a set of customized, default run options has been saved in the DATE database,
then the run options are set accordingly. The name of this set of run options in
the MySQL database is DEFAULT .

Having completed the above sequence of operations, the runControl process sets
its status to DISCONNECTED and waits for operator commands.

The main commands are the following:

• CONNECT(name): loads from the DATE database the DAQ configuration with
the given name and generates a new current configuration. It then creates the
Logic Engine with the logic for the machines selected in the new current
configuration. If the name of the DAQ configuration is NONE, then the first step
is skipped and the runControl process continues with the existing current
configuration. If the name of the DAQ configuration is NEW, then the
runControl process gets the new DAQ configuration from the runControl
Human Interface having the mastership of it (obviously this possibility does
not exist when the source of active commands is the ECS).

If the CONNECT command completes successfully, the runControl process
locks the rcServers referenced by the newly created Logic Engine and sets
its status to CONNECTED.

• LOCK_PARAMETERS(name): loads from the DATE database a set of run
parameters with the given name. If the name is NONE, then the runControl
process continues with the current run parameters. If the name is NEW, then the
runControl process gets the new run parameters from the runControl
Human Interface having the mastership of it (obviously this possibility does
not exist when the source of active commands is the ECS).

If the LOCK_PARAMETERS command completes successfully, the
runControl process sets its status to READY.

• START_PROCESSES(name): loads from the DATE database a set of run
options with the given name. It then tells the Logic Engine to start the
required data-acquisition processes on all the selected machines. If the given
name is NONE, then the first step is skipped and the runControl process
continues with the current run options. If the name is NEW, then the
runControl process gets the run options from the runControl Human
Interface having the mastership of it (obviously this possibility does not
exist when the source of active commands is the ECS).
ALICE DAQ and ECS manual

The runControl process 215
If the source of active commands is a runControl Human Interface, the
runControl reads the current run number from the DAQ database,
increments it and saves it back. If the source of active commands is the ECS,
then the run number is defined by the ECS and transmitted to the runControl
with the START_PROCESSES command.

If the START_PROCESSES command completes successfully (i.e. the
runControl gets from the Logic Engine a feedback confirming that all
the required processes are running), the runControl process sets its status to
STARTED.

• START_DATA_TAKING: sends to all the selected machines (via theLogic
Engine) the authorization to start the data taking. The runControl process
then sets its status to RUNNING.

• STOP_DATA_TAKING: tells the Logic Engine to stop the data-acquisition
processes on all the selected machines. When all the processes are stopped, the
runControl process sets its status to READY.

• STOP_PROCESSES: has the same effect as STOP_DATA_TAKING. The only
difference is that it can be issued when the actual data taking has not yet been
started.

• ABORT_PROCESSES: has the same effect as STOP_PROCESSES. The
ABORT_PROCESSES command is however stronger than the
STOP_PROCESSES command and may actually kill the processes that fail
responding. The ABORT_PROCESSES command can be sent from a
runControl Human Interface when an error condition has activated the
Abort button.

• UNLOCK_PARAMETERS: unlocks the run parameters and sets the status of
the runControl process to CONNECTED.

• DISCONNECT: stops the Logic Engine and unlocks the rcServers
referenced by the stopped Logic Engine. The runControl process then sets
its status to DISCONNECTED.

In addition to the operator commands, the runControl process gets some
feedback from the Logic Engine. This feedback allows the handling of requests,
such as EndOfRun requests issued by processes running on the remote machines
and transmitted by the rcServers to the Logic Engine.

The runControl process also fills the eLogbook with information about the
different runs (start time, end time, list of detectors).

Finally the runControl process acts as a DIM server and provides the following
DIM services to the subscribing clients:

• ${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_DAQ::${RCNAME}_CONTROL_
MESS : clients subscribing to this service receive the information and error
messages issued by the runControl process with name ${RCNAME}. The
DAQ_ROOT_DOMAIN_NAME environment variable is defined in the DATE
database.

• ${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_DAQ::${RCNAME}_CONTROL_
RUNNUMBER : clients subscribing to this service receive the run number being
used by the runControl process with name ${RCNAME}. The
DAQ_ROOT_DOMAIN_NAME environment variable is defined in the DATE
database.
ALICE DAQ and ECS manual

216 The runControl
�

• ${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_DAQ::${RCNAME}_CONTROL_
EOR: clients subscribing to this service are notified when the run being
controlled by the runControl process with name ${RCNAME}is finished. The
DAQ_ROOT_DOMAIN_NAME environment variable is defined in the DATE
database.

14.4 The runControl interface

Every runControl process has a runControl interface with two main functions:

• it rejects commands incompatible with the current status of the runControl
process.

• it guarantees that, at any time, the source of commands is unique: a given
runControl Human Interface or the ECS.

The runControl interface is implemented as an SMI domain containing objects
required to perform the two main functions described above. It also contains a few
other objects associated to minor functions, such as enabling the Abort button in
the runControl Human Interfaces or keeping a track of the final state of the
last performed data taking.

The name of this SMI domain is ${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_DAQ
where RCNAME is a variable containing the name assigned to the runControl
process at start time and DAQ_ROOT_DOMAIN_NAME is the environment variable is
defined in the DATE database.

14.5 The runControl Human Interface

The runControl Human Interface may be used to send all the commands
described in Section 14.3 to the runControl process. In addition to that, it allows
database operations that can be performed without commands to the runControl
process. Examples of operations of this second type are the definition of a default
DAQ configuration, the creation of default sets of run parameters and run options,
the creation of named sets of run parameters and run options to be used during
special runs.

A detailed description of the runControl Human Interface is given in the
ALICE DAQ WIKI.

14.6 The Logic Engine

The Logic Engine is based on the list of machines selected to play a role in the
data acquisition and therefore it cannot exist as long as the DAQ configuration is
ALICE DAQ and ECS manual

The rcServers 217
not defined. The Logic Engine is created by the runControl process when it
receives the CONNECT command.

The Logic Engine receives commands from the runControl process, creates
from these commands and from the StartOfRun and EndOfRun logic the
sequences of commands to be executed on every remote machine, sends these
commands to the rcServers running on the remote machines. It also returns to
the runControl process the feedback about requests issued by processes running
on the remote machines, such as EndOfRun requests.

The Logic Engine could be handled by a single SMI domain. However, in
practice it is implemented as a set of SMI domains, where every domain controls a
group with a limited number of remote machines. An additional SMI domain
coordinates these domains and therefore the groups of remote machines. This
implementation allows better usage of CPU resources and, if necessary, the
cooperation of more than one PC.

The name of the top level domain is
${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_CONTROL where RCNAME is a variable
containing the name assigned to the runControl process at start time and
DAQ_ROOT_DOMAIN_NAME is the environment variable is defined in the DATE
database. The other domains dealing with groups of remote machines are named
${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_CONTROL_1,
${DAQ_ROOT_DOMAIN_NAME}${RCNAME}_CONTROL_2, etc.

14.7 The rcServers

An rcServer process must run on all the machines of the DAQ system where the
Logic Engines need to start processes. At startup time, every rcServer creates
on the local machine a shared memory control region. This region contains various
flags and counters and is used as interprocess communication object by the
rcServer and its children. The rcServer then waits for a runControl process
needing its services.

When a runControl process executes a CONNECT command, it creates a Logic
Engine, locks the rcServers running on the remote machines that are part of its
DAQ configuration, and starts using them. These rcServers provide to the
runControl process, to its Logic Engine, and to its runControl Human
Interfaces the following services:

• start and stop processes according to commands from the Logic Engine. Two
types of processes are started and stopped by the rcServer: processes
controlled through the shared memory control region and processes that, once
started interact with the Logic Engine directly. The DATE processes are
processes of the first type: the shared memory control region is used by the
rcServer to send commands and parameters to the processes and by the
processes to issue requests, such as EndOfRun requests, and to update various
flags and counters. Once started, the processes of the second type interact with
the Logic Engine and are ignored by the rcServer. Examples of processes
of this type are the DDL Data Generators, and some synchronous process
required by calibration procedures.
ALICE DAQ and ECS manual

218 The runControl
�

• perform local error handling. The rcServer continously checks that the
started DATE processes are alive. When it finds a missing process, it issues an
EndOfRun request.

• handle EndOfRun requests issued by the running processes.

• provide the information required by the Status Display as a DIM service.

• provide error and information messages as a DIM service.

When the runControl process executes the DISCONNECT command, it unlocks
the previously locked rcServers. These rcServers start again waiting for a
runControl process needing their services.

At any time, the crash of an rcServer being used by a runControl process forces
the runControl process to execute a DISCONNECT command.

14.8 The RCS interface

This interface guarantees that the rcServers receive only valid commands and
that every rcServer is used by at most one runControl process in the context of
one and only one data acquisition.

The RCS interface is implemented as an SMI domain whose name is
${DAQ_ROOT_DOMAIN_NAME}_RCSERVERS.

14.9 Run parameters

This section describes the Common and role specific run parameters used by the
runControl and by the sprocesses started on the various machines. The
Common RunParameters are described in (Table 14.1).

Table 14.1 Common RunParameters

Name Parameter name Description Default Range

Collider mode colliderMode-
Flag

Defines the event ID field of the
base event header

• 0 = Fixed target

• 1 = Collider mode

readout sets the event type attri-
bute field in the event header
accordingly

1 0 , 1

Common Data
Header Present

cdhPresentFlag Common data header in raw data
• 0 = Not present

• 1 = Present

1 0 , 1
ALICE DAQ and ECS manual

Run parameters 219
The LDC, GDC, and EDM RunParameters are described in Table 14.2, Table 14.3,
and Table 14.4

Burst struc-
ture in Cole

burstPresent-
Flag

When Cole is used
• 0 = No burst structure

• 1 = Burst mode

0 0 , 1

No. of events
in burst

simBurstLength When Cole is used, defines number
of events per burst

100 >= 0

Table 14.1 Common RunParameters

Name Parameter name Description Default Range

Table 14.2 LDC RunParameters

Name runParameter name Description Default Range

Max. number of
sub-events

maxEvents Maximum number of sub-events in
a run. Zero (0) means no limit.
If set, when the LDC hits the limit,
an end of run request is issued.

0 >= 0

Max. bytes to
record

maxBytes Maximum number of bytes to be
collected in a run. Zero (0) means
no limit.
If set, when the LDC hits the limit,
an end of run request is issued.

0 >= 0

Max. number of
bursts

maxBursts Maximum number of bursts to be
collected in a run. Zero (0) means
no limit.
If set, when the LDC hits the limit,
an end of run request is issued.

0 >= 0

Max. number of
errors

maxErrors Maximum number of allowed non
fatal errors.

10 >= 0

Max. event
size

maxEventSize It indicates the maximum size in
bytes of a sub-event.

2 000 000 >= 0

Max. file size maxFileSize Each run may be recorded on multi-
ple files. This is the maximum size
of each file in bytes.

• Zero (0) means no limit.

• A positive value should be
used only when the
RecordingDevice is a
disk file.

This parameter is ignored if the
Recording disabled run option
is selected or when the recording is
done only in the GDCs.

0 0-2.e9
ALICE DAQ and ECS manual

220 The runControl
�

Logging level logLevel It controls the generation of mes-
sages by all the DATE processes
running on an LDC machine.
The possible values are described in
Section 14.11.

10 0 - 100

Local Record-
ing device

localRecord-
ingDevice

The setting must be done according
to Section 13.2.
This parameter is ignored if the
Recording disabled run option
is selected or when the recording is
done only in the GDCs.

/dev/null

SOR in Sepa-
rate File

sorSeparate-
File

If set to 1 the SOR event is stored in
a separe file

0 0 - 1

Paged data
flag

pageDataFlag Defines the event data structure.
Possible values:

• Streamlined events (0) (see
Section 5.3.1)

• Paged events (1) (see
Section 5.3.2)

1 0 , 1

Monitor enable
flag

monitorEnable-
Flag

Switch to enable and disable the
possibility of monitoring. It may
introduce a penalty on the data rate
performances.
Zero (0) means disabled, one (1)
enabled.

1 0 , 1

LDC socket
size

ldcSocketSize Defines the size of the socket used
by the recording library (described
in Section 20.4).
Possible values:

• 0: system default

• >0: socket size set to given
value

• <0: socket size = MIN
(-ldcSocketSize,
maxEventSize)

0 Integer

Max. time for
SOR/EOR phases

phaseTimeout-
Limit

Maximum duration (in seconds) of
any phase of the start and stop pro-
cedures executed on the LDC. The
run is aborted if any LDC process
does not complete the phase in due
time.

• If zero (0) a value of 30 s is
used by default.

30 0 - 600

Table 14.2 LDC RunParameters

Name runParameter name Description Default Range
ALICE DAQ and ECS manual

Run parameters 221
Recorder sleep
time

recorderSleep-
Time

The recorder goes to sleep while
events are arriving to give priority
to readout. The time interval
(expressed in microseconds) is
picked up from this parameter.
If zero (0) or negative a value of 10
microseconds is used.

0 Integer

Completion
sleep time

checkComple-
tionSleepTime

Sleeptime (in milliseconds) when
checking for I/O completion in
recorder.

1 1 - 1000

Rec sleep for
mask

recMaskSleep-
Time

Polling loop interval (in microsec-
onds), when waiting for edm
masks.
If zero (0) or negative a value of
 500 000 microseconds is used.

0 Integer

Max. # of
sleeps for
mask

recMaskSleep-
CntLimit

Maximum number of consecutive
polling loops when waiting for an
edm mask, before aborting.

500 > 1

startOfData/
endOfData
event enabled

sodEodEnabled START_OF_DATA/END_OF_DATA
event flag. If set to 0 the SOD event
is disabled. If set to 1 the SOD event
is enabled. if set to 2 the SOD event
is enabled and all the events
received before it are discarded.

1 0, 2

startOfData
timeout

startOfData-
Timeout

Timeout when waiting for
START_OF_DATA events

10 >= 1

endOfData
timeout

endOfDataTime-
out

Timeout when waiting for
END_OF_DATA events

10 >= 1

EDM agent
enable

edmEnabled EDM agent flag 1 Locked

HLT agent
enable

hltEnabled HLT agent flag 1 Locked

Real Hostname realHostname IP hostname Locked

Table 14.3 GDC RunParameters

Name runPramater name Description Default Range

Max. bytes to
record

maxBytes Maximum number of bytes to be
collected in a run. Zero (0) means
no limit.
If set, when the GDC hits the limit,
an end of run request is issued.

0 >= 0

Max. number of
errors

maxErrors Maximum number of allowed non
fatal errors.

10 >= 0

Table 14.2 LDC RunParameters

Name runParameter name Description Default Range
ALICE DAQ and ECS manual

222 The runControl
�

Max. SOR/EOR
file size

maxEventSize It indicates the maximum size in
bytes of SOR/EOR file event.
Please note that this parameter
applies to SOR/EOR file events
only.

4 000 000 >= 0

Max. file size maxFileSize Each run may be recorded on multi-
ple files. This is the maximum size
of each file in bytes.

• Zero (0) means no limit.

• A positive value should be
used only when the
recordingDevice is a
disk file.

This parameter is ignored if the
Recording disabled or the
Recording on PDS run option is
selected.

0 0-2.e9

Logging level logLevel It controls the generation of mes-
sages by all the DATE processes
running on a GDC machine.
The possible values are described in
Section 14.11.

10 0 - 100

Local Record-
ing device

localRecord-
ingDevice

The setting must be done according
to Section 13.2.
This parameter is ignored if the
Recording disabled or the
Recording on PDS run option is
selected.

/dev/null

SOR in Sepa-
rate File

sorSeparate-
File

If set to 1 the SOR event is stored in
a separe file

0 0 - 1

Monitor enable
flag

monitorEn-
abledFlag

Switch to enable and disable the
possibility of monitoring. It may
introduce a penalty on the data
rate.
Zero (0) means disabled, one (1)
enabled.

1 0 , 1

Max. time for
SOR/EOR phases

phaseTimeout-
Limit

Maximum duration (in seconds) of
any phase of the start and stop pro-
cedures executed on the GDC. The
run is aborted if any GDC process
does not complete the phase in due
time.

• If zero (0) a value of 30 s is
used by default.

30 0 - 600

Table 14.3 GDC RunParameters

Name runPramater name Description Default Range
ALICE DAQ and ECS manual

Run parameters 223
Nearly empty ebNearlyEmpty Threshold (in %) below which the
eventBuilder changes its state
from ebNearlyFull to ebNear-
lyEmpty

10 0 - 100

Nearly Full ebNearlyFull Threshold (in %) above which the
eventBuilder changes its state
from ebNearlyEmpty to ebNear-
lyFull

90 0 - 100

Max. number of
events

maxEvents This parameter is kept for future
development and is not used in the
present version.

0 Locked

EDM agent
enable

edmEnabled EDM agent flag 1 Locked

HLT agent
enable

hltEnabled HLT agent flag 1 Locked

Real Hostname realHostname IP hostname Locked

Table 14.4 EDM RunParameters

Name runPrameter name Description Default Range

Max. number of
errors

maxErrors Maximum number of allowed non
fatal errors.

1 >= 0

Logging level logLevel It controls the generation of mes-
sages by all the DATE processes
running on an EDM machine.
The possible values are described in
Section 14.11

10 0 - 100

Max. time for
SOR/EOR phases

phaseTimeout-
Limit

Maximum duration (in seconds) of
any phase of the start and stop pro-
cedures executed on the EDM. The
run is aborted if any EDM process
does not complete the phase in due
time.

• If zero (0) a value of 30 s is
used by default.

30 0 - 600

Poll time out edmPollTimeOut Sleep time (in milliseconds) when
polling the input channels.

100 >= 0

Quorum percent edmQuorumPer-
cent

Percentage of GDCs required to be
available before new masks are
sent.

50 0 - 100

edm delta edmDelta Size of the bottom range of validity
for a mask, where a request for a
new mask must be issued (in units
of eventId).

200 >= 0

Table 14.3 GDC RunParameters

Name runPramater name Description Default Range
ALICE DAQ and ECS manual

224 The runControl
�

14.10 Run-time variables

The run-time variables that can be seen via the runControl are described in
Table 14.5, Table 14.6, and Table 14.7.

GDCs validity
mask interval

edmInterval Size of range validity for a mask (in
units of eventId).

5000 >= 0

Real Hostname realHostname IP hostname Locked

Table 14.4 EDM RunParameters

Name runPrameter name Description Default Range

Table 14.5 LDC run-time variables

Name Description

Number of equipments Number of equipments in the 1st level vector.
Set by the routine ArmHw.

Number of triggers Number of triggers.
Incremented by readout at each physics event (not
for the other types of events) after calling ReadEvent,
and then stored in eventHeader.triggerNb.

Current Trigger rate Triggers per second since the last Status Display
update. Computed by rcServer.

Average Trigger rate Triggers per second since the SOR. Computed by
rcServer.

Number of sub-events Number of processed sub-events.
Incremented by readout for all types of events before
calling ReadEvent.

Sub-event rate Sub-events per second since the last Status Display
update. Computed by rcServer.

Sub-events recorded Number of sub-events recorded by the LDC on disk, or
sent to the GDCs.
Set by recorder.

Sub-event recorded rate Sub-events recorded per second since the last Status
Display update.
Computed by rcServer.

Bytes injected Number of KB received by the LDC.
Set by readout.

Byte injected rate Number of bytes injected per second since the last Sta-
tus Display update.
Computed by rcServer.

Bytes recorded Number of KB recorded by the LDC on disk or sent to
the GDCs.
Set by recorder.
ALICE DAQ and ECS manual

Run-time variables 225
Byte recorded rate Bytes recorded per second since the last Status Display
update.
Computed by rcServer.

Bytes in buffer Difference between Bytes injected and Bytes
recorded.
Computed by rcServer.

Nb evts w/o HLT decision Number of events waiting for HLT decision.

inBurst flag This variable is set to one (1) during the burst and is
reset to zero (0) otherwise.
Set by readout, only when the burstPresentFlag
Common RunParameter is set to 1.

Recorder pid PID of the recorder process.

Number of bursts Set by readout at each event, after calling ReadE-
vent, to the value found in eventHeader.burstNb.

Number of sub-events in
burst

Set by readout at each event, after calling ReadE-
vent, to the value found in eventHeader.nbInBurst.

recMaskSleepLoopCnt Copy of internal counter of consecutive sleeps waiting
for edm mask.
Set by edmAgent.

recMaskSleepCnt Number of events for which an edm mask was not
available.
Set by edmAgent.

Nb. of Readout FIFO full Counts how many times readout has been waiting for
space of the readoutReady FIFO.
Set by readout.

edmClient SOR/EOR phases A number indicating the phase of the start or stop pro-
cedure executed by the edmClient process.
Zero (0) means completion.

wakeUpReqFlag Flag of communication between edmAgent and edm-
Client to indicate the status of a request for an edm
mask.
Used by edmAgent and edmClient.

EventID for wakeup request Event identifier for which a request of wake up has
been triggered.
Used by edm, edmClient, edmAgent.

edmMaskValidityRange Validity range for the edm mask.
Set by edm.

edmMask edm mask

lastEventId EventId monotonically increasing for all the special
event types.
Set in readout.

readout SOR/EOR phases A number indicating the phase of the start or stop pro-
cedure executed by the readout process.
Zero (0) means completion.

Table 14.5 LDC run-time variables

Name Description
ALICE DAQ and ECS manual

226 The runControl
�

edmAgent SOR/EOR phases A number indicating the phase of the start or stop pro-
cedure executed by the edmAgent process.
Zero (0) means completion.

hltAgent SOR/EOR phases A number indicating the phase of the start or stop pro-
cedure executed by the hltAgent process.
Zero (0) means completion.

recorder SOR/EOR phases A number indicating the phase of the start or stop pro-
cedure executed by the recorder process.
Zero (0) means completion.

Machine identifier Machine identifier as defined in the DATE roles data-
base.

Spare variable 1 - 10 Reserved for DATE developers.

Spare String 1 - 5 Reserved for DATE developers.

Site Spec 1 - 5 Reserved for DATE developers.

Site Spec String 1-2 Reserved for DATE developers.

Table 14.6 GDC run-time variables

Name Description

Number of sub-events Number of processed sub-events.
Incremented by eventBuilder

Sub-event rate Sub-events per second since the last Status Display
update.
Computed by rcServer.

Events recorded Number of events recorded on disk by the GDC.
Set by eventBuilder.

Event recorded rate Events recorded per second since the last Status Dis-
play update.
Computed by rcServer.

Bytes recorded Number of KB recorded on disk by the GDC.
Set by eventBuilder.

Byte recorded rate Bytes recorded per second since the last Status Display
update.
Computed by rcServer.

File count Number of files recorded in the current run.
Set by the eventBuilder.

Nb. times nearly full Number of times the eventBuilder has declared
itself nearly full.
Set by the eventBuilder (internal counter).

Table 14.5 LDC run-time variables

Name Description
ALICE DAQ and ECS manual

Run-time variables 227
Nb. times nearly empty Number of times the eventBuilder has declared
itself nearly empty.
Set by the eventBuilder (internal counter).

Nb. of incomplete events Number of incomplete events.
Set by the eventBuilder (internal counter).

eventBuilder pid PID of the eventBuilder process.

Status of EVB vs. EDM String describing the status of the eventBuilder sent
to the edm (edm active only).
Set by eventBuilder.

eventBuilder SOR/EOR
phases

A number indicating the phase of the start or stop pro-
cedure executed by the eventBuilder process.
Zero (0) means completion.

Machine identifier Machine identifier as defined in the DATE roles data-
base.

Spare variable 1 - 10 Reserved for DATE developers.

Spare String 1 - 5 Reserved for DATE developers.

Site Spec 1 - 5 Reserved for DATE developers.

Site Spec String 1 - 2 Reserved for DATE developers.

Table 14.7 EDM run-time variables

Name Description

FIFO size Size of edm mask FIFO.

EDM FIFO full count Number of times the edm mask FIFO is full.
Set by edmClient.

EventID for wakeup request Event identifier for which a request of wake up has
been triggered.
Used by edm, edmClient, edmAgent.

maxWakeUpId The highest event identifier for which a request of
wake up has been triggered.
Set by edm.

Last validity range
threshold

Last validity range threshold sent.
Set by edm.

Last validity range upper
bound

Last validity range upper bound sent.
Set by edm.

edmMaskValidityRange edm mask validity range

edmMask edm mask

Unavailable GDCs List of GDCs not present in the edm mask.
Computed by rcServer.

Table 14.6 GDC run-time variables

Name Description
ALICE DAQ and ECS manual

228 The runControl
�

14.11 Control of the log messages

All DATE packages create log messages for information, error reporting and
statistics purposes. It is possible to control, on a site-by-site and role by role basis,
the amount of information generated during DATE operation.

The run parameter loglevel is used to check the amount and the details of the
messages sent via the DATE infoLogger. The following conventions are
commonly followed by all the DATE processes:

• loglevel equal to 0: no statistics and no logging (even in case of error).

• logLevel above 0: run statistics are appended to the logBook stream and
error messages are sent to the runLog and package-specific streams.

• loglevel between 10 and 19 (LOG_NORMAL_TH and
LOG_DETAILED_TH-1): normal level of logging. Run statistics, errors and
information messages are created. This is the level which should be used in
normal conditions and during data taking.

logLevel of 20 (LOG_DETAILED_TH) and above: level of logging used for the
development of the DATE software. A lot of messages are produced and in
particular, some messages are produced for each event. This level has a dramatic
effect on the performance and should therefore not be used during normal data
taking.

14.12 Log Files

Error and information messages are logged by all the components of the
runControl system using the infoLogger (Section 11.5). However, the stdout
and stderr streams of the processes are stored as temporary files in the
${DATE_SITE_TMP} directory. These files are usually read only by the DATE
developers and are overwritten when the associated processes are restarted. In

edm SOR/EOR phases A number indicating the phase of the start or stop pro-
cedure executed by the edm process.
Zero (0) means completion.

Machine identifier Machine identifier as defined in the DATE roles data-
base.

Spare variable 1 - 10 Reserved for DATE developers.

Spare String 1 - 5 Reserved for DATE developers.

Site Spec 1 - 5 Reserved for DATE developers.

Site Spec String 1 - 2 Reserved for DATE developers.

Table 14.7 EDM run-time variables

Name Description
ALICE DAQ and ECS manual

Log Files 229
some cases, the previous version of the log file is renamed to allow more
debugging.

All these temporary log files have a .stdout postfix and a name that follows the
conventions listed below:

• log files created by SMI domains have a name in upper case characters, equal to
the name of the SMI domain.

• log files created by runControl processes have a name that is the
concatenation of the runControl process name and the fixed string
'_control'. The name is in lower case characters.

• log files created by runControl Human Interfaces have a name that is the
concatenation of the runControl process name, the fixed string
'_controlhi', and the process identifier (PID) of the runControl Human
Interface. The name is in lower case characters.

• log files created by rcServers have a name that is equal to the symbolic name
assigned in the DATE database to the component of the DAQ system where the
rcServer runs. If the symbolic name of an LDC is pcxxldc, then the
rcServer running on it creates a 'pcxxldc.stdout' log file. The name is in
lower case characters.
ALICE DAQ and ECS manual

230 The runControl
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
15
The physmem
package

This chapter describes the DATE package physmem. The package contains a
Linux kernel module to support shared access to a large contiguous block of
non-paged physical memory which has been reserved at boot time. The installation
procedure, a description of the utility programs, and some information about the
kernel module implementation are presented.

15.1 Introduction. 232

15.2 Installation of the physmem driver 232

15.3 Utility programs for physmem 237

15.4 Internals of the physmem driver 240

15.5 Physmem application library 244

232 The physmem package
�

15.1 Introduction

The supporting mechanism of a memory bank required by each DATE host can be
either of type IPC, PHYSMEM, BIGPHYS, or HEAP (see Chapter 4). If a memory bank
needs to be large and non-paged, the best choice on the Linux operating system is
PHYSMEM. Furthermore, a memory bank of type PHYSMEM allows to obtain the
physical base address of this memory, which is mandatory for the RORC readout
software (see Chapter 7).

Since a Linux operating system does not provide a mechanism to allocate and
deallocate large amounts of non-paged memory, this chapter describes the
physmem approach that was developed for DATE. It exploits the feature that a
separate block of memory can be reserved at boot time, which is not seen by Linux.
An additional kernel module driver is needed to access this physmem memory. In
comparison to the bigphysarea approach, which is based on the same principles,
the physmem approach does not rely on specific Linux kernel patches.

The DATE package physmem provides all the necessary software to make the
physmem memory available. This package is self-contained and resides in the
${DATE_ROOT}/physmem directory. The following documentation describes the
installation procedure of the physmem kernel module (see Section 15.2), the usage
of the utility programs (see Section 15.3), and gives some information about the
physmem kernel module internals (see Section 15.4).

15.2 Installation of the physmem driver

This section provides a guide to install and configure the software in order to access
the physmem memory on a machine that runs a Linux operating system with a 2.4
and 2.6 kernels. The installation of the physmem driver is part of the basic DATE
installation.

15.2.1 Configuring the boot loader

As a first step, the physical memory of a machine must be partitioned into a region
for Linux and a region for physmem. This can be achieved during the boot process
of a Linux operating system by passing the mem parameter to the kernel. This
parameter defines the size of the Linux memory region, whereas the remaining
memory can be used for physmem. For example, if a machine has 4.5 GB of memory
installed and the mem parameter is set to 1024M, then the Linux memory region
encloses 1 GB and the physmem memory region gets the remaining 3.5 GB.
However, the Linux operating system does not always set precisely this memory
boundary as requested by the mem parameter.

The boot loader of a Linux operating system can be used to pass the mem parameter
to the kernel. In case of boot loader GRUB, Listing 15.1 shows an example of its
configuration file /etc/grub.conf to trim the memory region for Linux to 1 GB
(line 3). In case of boot loader LILO, Listing 15.2 shows an example of the
ALICE DAQ and ECS manual

Installation of the physmem driver 233
configuration file /etc/lilo.conf to trim the memory region for Linux to 1 GB
(line 4).

After rebooting the machine, the memory region for Linux will be reduced to the
value given in the respective configuration file. This can be verified by issuing the
following command:

> cat /proc/meminfo

15.2.2 Setting up the physmem driver

The physmem memory is represented by the two device files /dev/physmem0 and
/dev/physmem1, both with major device number 122. Device file
/dev/physmem0 with minor device number 0 is exclusively used by the RORC
utility programs (see Chapter 20) and the assigned physmem memory has a default
size of 96 MB. Device file /dev/physmem1 with minor device number 1 is used
for a memory bank of type PHYSMEM. The assigned memory for each physmem
device is a separate block of the physical memory.

The physmem software package is installed together with the DATE kit. However, if
someone wants to use the stand-alone DDL and RORC software (described in
Chapter 20) he has to install the physmem driver and library. For a stand-alone
installation, follow the given procedure below:

• The header, source, object and executable files of the physmem driver, library
and test programs are in the common AFS area:

/afs/cern.ch/alice/daq/ddl/physmem/

This directory contains the different versions of the software as separate
sub-directories. It also contains the different versions in compressed formats.

• The compressed file names show the version number and the time of archiving.
Always use the latest date of a given version. The latest distributed version can
be found on the following Web page:

http://cern.ch/ddl/rorc_support.html

• Copy the compressed file on a local directory and uncompress it. Use the

Listing 15.1 Example of GRUB to trim the Linux memory region to 1 GB

1: title Red Hat Linux (2.4.21-4)
2: root (hd0,0)
3: kernel /boot/vmlinuz-2.4.21-4 ro root=/dev/hda1 mem=1024M
4: initrd /boot/initrd-2.4.21-4.img

Listing 15.2 Example of LILO to trim the Linux memory region to 1 GB

1: image=/boot/vmlinuz-2.4.21-4
2: label=linux2421-4
3: initrd=/boot/initrd-2.4.21-4.img
4: append="mem=1024M"
5: read-only
6: root=/dev/hda1
ALICE DAQ and ECS manual

234 The physmem package
�

following command for extracting the files:

gtar -xvzf physmem_vx.y_year.month.day.tgz vx.y/
where x.y is the version number of the package.

• To do the driver, library and utility compilation, type the following commands:

cd vx.y
make -f Makefile clean
make -f Makefile

• To create the device files, and prepare the driver to be loaded at boot time type
as root the following commands
make -f Makefile dev
This command creates the device files, loads the driver module to the
appropriate place and edits the /etc/rc.modules file for automatic loading
of the module at boot time. If one wants to give a parameter to the driver,
she/he can modify this file.

• To load the physmem driver kernel module without booting type as root:

make -f Makefile load

• In case an older version of the physmem driver is already loaded, then type as
user root:

make -f Makefile reload

• To check if the driver is loaded type:

./check_driver.

This script shows if the driver is loaded (calling /sbin/lsmod) and the driver
messages during load time (calling dmesg). Listing 15.3 gives an example
dialog in which the memory regions for physmem and for Linux are 3220504576
bytes (786256 pages) and 1073741827 bytes (262144 pages) respectively. In this
example the assigned memory to /dev/physmem0 is 100663296 bytes (the
default 96 MB) starting at physical address 0x40000000, and the assigned
memory to /dev/physmem1 is 3119841280 bytes (2975 MB), starting at physical
address 0x46000000. There is a “gap” in the physmem1 memory between the
physical addresses 0xcff50000 to 0x100000000, which is assigned to other
devices by the BIOS, dividing physmem1 memory into 2 zones.
ALICE DAQ and ECS manual

Installation of the physmem driver 235
In the case of a 64 bit architecture, if the memory size is bigger then 4 GB, the BIOS
can assign some memory area to devices like video memory just below of the 4 GB
limit. This part of the memory can not be used by the physmem devices. In this
way one of the physmem devices (generally /dev/physmem1) is divided into two
zones. Both zones have continuous physical addresses but there is a “gap” in the
physical addresses between the two zones (even if the mapped user addresses are
continuous between the two zones). In the previous Listing 15.3 we can see an
example of the zones. The programs using physmem devices should be careful not
to use the memory between the zones. The routines in the physmem library give
assistance to this problem: a routine (physmemBlockIsNotContinuous(), see
its description in Section 15.5) checks whether a given memory area contains
unusable addresses.

During the loading process of the physmem kernel module the entire memory
beyond the region of Linux is claimed as physmem memory. However, a specific
size of the total memory region for physmem can be enforced by passing the
parameter physmemsize to the physmem kernel module. This parameter is
optional and specifies the total size of the memory region for physmem in MB. If
this parameter is 0 or not present, the whole memory beyond the region of Linux
will be claimed. As an example, the following commands load the physmem kernel
module by putting a limit of 256 MB to the physmem memory:

> /sbin/rmmod physmem
> /sbin/insmod Linux/physmem.ko physmemsize=256

The size of the assigned memory for device/dev/physmem0 can be controlled by
passing the parameter physmemsize0 to the physmem kernel module. This
parameter is optional and specifies the size in MB. If this parameter is 0 or not
present, the default of 96 MB will be used. As an example, the following commands

Listing 15.3 Example to list the physmem physical base addresses and sizes

1: > ./check_driver
2: lsmod:
3: Module Size Used by
4: physmem 44680 0
5:
6: dmesg:
7: physmem: loading driver version 4.13 with physmemsize=0 and

physmemsize0=0 (all in MB)
8: physmem: linux version code = 2.6.18 (SLC 5.4), instruction set =

64 bit
9: physmem: physical base address: 0x40000000
10: physmem: physmem total size: 3220504576 bytes (786256 pages)
11: physmem: Linux total size: 1073741824 bytes (262144 pages)
12: physmem: device physmem0 starts at 0x40000000 with 100663296

bytes (96 MB)
13: physmem: device physmem0 uses 1 mem zone(s)
14: physmem: physmemMapZones [device] [zone] [

physZone]
15: physmem: physmemMapZones [0] [0] [0]
16: physmem: device physmem1 starts at 0x46000000 with 3119841280

bytes (2975 MB)
17: physmem: device physmem1 uses 2 mem zone(s)
18: physmem: physmemMapZones [device] [zone] [

physZone]
19: physmem: physmemMapZones [1] [0] [0]
20: physmem: physmemMapZones [1] [1] [1]
21: physmem: physZone0: start 0x40000000, end 0xcff50000
22: physmem: physZone1: start 0x100000000, end 0x130000000
ALICE DAQ and ECS manual

236 The physmem package
�

load the physmem kernel module by putting a limit of 16 MB to the device
/dev/physmem0:

> /sbin/rmmod physmem
> /sbin/insmod Linux/physmem.ko physmemsize0=16

The size of the assigned memory for device/dev/physmem1 is given by the total
size of the as physmem memory reduced by the size of the assigned memory for
device/dev/physmem0, but not more than 2 GB, in case of 32 bit system. Both
physmem module parameters can be passed to the physmem kernel module in one
line. If one wants the driver to be loaded with some parameters at the next boot
time, she/he can modify the /etc/rc.modules file accordingly.

Figure 15.1 in Section 15.4 shows the physical memory layout.

15.2.3 Testing the physmem driver

The DATE package physmem includes an utility program physmemTest to write
and read back a pattern to the first and to the last 10000 bytes of the assigned
memory for each physmem device. It can be used to test the functions of the
physmem driver. Listing 15.4 shows how to start this utility program and a
successful response. For the description of the program see Section 15.5. No other
application should use the physmem memory during this test in order to avoid data
corruption.
ALICE DAQ and ECS manual

Utility programs for physmem 237
15.3 Utility programs for physmem

The DATE package physmem includes several utility programs for the physmem
memory. They are useful for debugging purpose. The program physmemTest
performs a simple read/write test on the first and last 10000 bytes of the assigned
memory for each physmem device. With the help of the program physmemFill a
pattern (also made of zeros for cleaning purposes) can be written into a section of
the physmem memory. A section of the physmem memory can be displayed with
the program physmemDump. In the following their synopsis is presented.

Listing 15.4 Example of testing the physmem driver with utility physmemTest

1: > /date/physmem/Linux/physmemTest -m 0
2: Opening /dev/physmem0
3: Physical address = 0x40000000
4: Physical usable size of device (no hole) : 0x6000000
5: + Number of memory zones : 1
6: + Mem zone 1 : 0x40000000 -> 0x46000000 (size = 0x6000000)
7: Mmap done to 0x2accfcbda000 -> 0x2acd02bda000, trying to access

physmem
8: + test write: from 0x2accfcbda000, 1000 bytes written
9: + test read: from 0x2accfcbda000, all 1000 bytes are ok
10: Writing just before the memory end
11: + test write: from 0x2acd02bd9c18, 1000 bytes written
12: + test read: from 0x2acd02bd9c18, all 1000 bytes are ok
13: unmapp'ing
14: physical full size of device (including hole) = 0x6000000
15: re-mapp'ing
16: Mmap done to 0x2accfcbda000 -> 0x2acd02bda000, trying to access

physmem
17: Reading from the start of memory
18: + test read: from 0x2accfcbda000, all 1000 bytes are ok
19: Reading just before the memory end
20: + test read: from 0x2b2f31e25c18, all 1000 bytes are ok
21: >
22: > /date/physmem/Linux/physmemTest -m 1
23: Opening /dev/physmem1
24: Physical address = 0x46000000
25: Physical usable size of device (no hole) : 0xb9f50000
26: + Number of memory zones : 2
27: + Mem zone 1 : 0x46000000 -> 0xcff50000 (size = 0x89f50000)
28: + Mem zone 2 : 0x100000000 -> 0x130000000 (size = 0x30000000)
29: Mmap done to 0x2b0e21b11000 -> 0x2b0edba61000, trying to access

physmem
30: + test write: from 0x2b0e21b11000, 1000 bytes written
31: + test read: from 0x2b0e21b11000, all 1000 bytes are ok
32: Writing just after the 'hole' in memory
33: + test write: from 0x2b0eaba61000, 1000 bytes written
34: + test read: from 0x2b0eaba61000, all 1000 bytes are ok
35: unmapp'ing
36: physical full size of device (including hole) = 0xea000000
37: re-mapp'ing
38: Mmap done to 0x2b0e21b11000 -> 0x2b0f0bb11000, trying to access

physmem
39: Reading from the start of memory
40: + test read: from 0x2b0e21b11000, all 1000 bytes are ok
41: phys_zones[1].start = 0x100000000
42: Reading just after the 'hole' in memory
43: + test read: from 0x2b0edbb11000, all 1000 bytes are ok
44: Writing just before the phys_zone[1].end
45: + test write: from 0x2b0f0bb10c18, 1000 bytes written
46: + test read: from 0x2b0f0bb10c18, all 1000 bytes are ok
ALICE DAQ and ECS manual

238 The physmem package
�

physmemTest

Synopsis physmemTest [{-m|-M} DEVICE_NUMBER]

Description The physmemTest program opens the device defined by the DEVICE_NUMBER
program parameter, finds out the physical base address and the size of assigned
memory, and maps to the whole assigned physmem memory using both mapping
methods. For the details of mapping methods see Section 15.4, ”Internals of the
physmem driver”.

If the assigned physmem memory has only one memory zone the program writes a
pattern (incremental data words with starting value 0) to the first 10000 bytes, reads
back and checks the first 10000 bytes, writes a pattern to the last 10000 bytes, reads
back and checks the last 10000 bytes. Then it remaps the assigned memory using
the second mapping method, reads back and checks the first and last 10000 bytes,
and closes the corresponding device.

When the assigned physmem memory has two or more memory zones the program
writes a pattern (incremental data words with starting value 0) to the first 10000
bytes, reads back and checks the first 10000 bytes, writes a pattern to the first 10000
bytes of the second zone, reads them back and checks them. Then it remaps the
assigned memory using the second mapping method, reads back and checks the
first 10000 bytes of the first and second zones. At the end it writes the pattern to the
last 10000 bytes of the second zone, reads them back and checks them, and closes
the corresponding device.

Parameters: • DEVICE_NUMBER: this parameter defines the minor device number. The default
value is 1 indicating device /dev/physmem1.

Example see Listing 15.4.

Tests the /dev/physmem0 and /dev/physmem1 memory.

physmemFill, physmemFillWithAddress

Synopsis physmemFill {{-o|-O} OFFSET | {-p|-P} PHYSICAL_ADDRESS}
 [{-l|-L} LENGTH
 [{-s|-S} START] [{-i|-I} INCREMENT]
 [{-m|-M} DEVICE_NUMBER]
 [{-d|-D} WORD_WIDTH]

physmemFillWithAddress [{-m|-M} DEVICE_NUMBER]
 [{-d|-D} WORD_WIDTH]

Description The physmemFill program opens the chosen physmem device, finds out the
physical base address and the size of assigned memory, maps to the whole assigned
physmem memory, writes a pattern into a section of the memory according to the
parameters, unmaps the assigned memory, and closes the corresponding device.
ALICE DAQ and ECS manual

Utility programs for physmem 239
The physmemFillWithAddress program fills the words of whole chosen
physmem device with its own physical address. It can be useful when one to check
if a program really changed the contains of the physmem memory.

Parameters: • OFFSET: this parameter defines the start of the section to be filled. It is given as
offset in bytes (flag -o) or in words (flag -O) relative to the user base address of
the assigned memory. Values starting with 0x or 0X are interpreted as
hexadecimal values.

• PHYSICAL_ADDRESS: this parameter gives the physical address of the start of
the section to be filled. Either OFFSET or PHYSICAL_ADDRESS must be
specified.

• LENGTH: this parameter defines the length of the section to be filled. It is given
in bytes (flag -l) or in words (flag -L). The size of the word is given by the
WORD_WIDTH parameter. Values starting with 0x or 0X are interpreted as
hexadecimal values.

• START: the section is filled with incremental data words. This parameter defines
the starting value. The default value is 0.

• INCREMENT: the section is filled with incremental data words. This parameter
defines the increment value. The default value is 1.

• DEVICE_NUMBER: this parameter defines the minor device number. The default
value is 0 indicating device /dev/physmem0.

• WORD_WIDTH: this parameter specifies whether the fill values are 4- or 8-byte
long. This size is taken at the calculation of world offset (flag -L). For 32 bit
architecture machine only 4-byte length is allowed. The default value is 4.

Example > /date/physmem/Linux/physmemFill -o 0 -l 1000 -m 1 -i 0

Fills the first 1000 bytes with 0 of the /dev/physmem1 memory.

physmemDump

Synopsis physmemDump {{-o|-O} OFFSET | {-p|-P} PHYSICAL_ADDRESS}
 [{-l|-L} LENGTH]
 [{-m|-M} DEVICE_NUMBER]
 [{-d|-D} WORD_WIDTH]

Description

The physmemDump program opens the chosen physmem device, finds out the
physical base address and the size of assigned memory, maps to the whole assigned
physmem memory, prints out the device properties (number of zones, size of zones
and gaps, physical and user offsets, etc.), reads a section of the memory according
to the parameters and prints it in a formatted way, unmaps the assigned memory,
and closes the corresponding device.

If the chosen physmem device is divided into separate zones, the program skips the
area between zones.

Parameters: • OFFSET: this parameter defines the start address of the section to be read. It is
ALICE DAQ and ECS manual

240 The physmem package
�

given as offset in bytes (flag -o) or in words (flag -O) relative to the user base
address of the assigned memory. Values starting with 0x or 0X are interpreted
as hexadecimal values.

• PHYSICAL_ADDRESS: this parameter gives the physical address of the start of
the section to be read. Either OFFSET or PHYSICAL_ADDRESS must be
specified.

• LENGTH: this parameter defines the length of the section to be read. It is given in
bytes (flag -l) or in words (flag -L). The size of the word is given by the
WORD_WIDTH parameter. Values starting with 0x or 0X are interpreted as
hexadecimal values. If a 0 length is given the program only prints the device
properties as the number of zones, the size of zones and gaps, the physical and
user offsets.

• DEVICE_NUMBER: this parameter defines the minor device number. The default
value is 0 indicating device /dev/physmem0.

• WORD_WIDTH: this parameter specifies whether to dump the memory words 4-
or 8-byte long. This size is taken at the calculation of world offset (flag -L). For
32 bit architecture machine only 4-byte length is allowed. The default value is 4.

Example > /date/physmem/Linux/physmemDump -o 0 -l 1000 -m 1

Dumps the first 1000 bytes of the /dev/physmem1 memory.

15.4 Internals of the physmem driver

The physmem kernel module services the module initialization as well as the
cleanup requests and the file operations on the device files with major number 122.
The source code of this kernel module can be found in file physmem.c together
with physmem.h in the physmem package. During the loading of the physmem
kernel module, the device is registered, the memory end of the Linux region is
determined, and the size of the memory beyond this boundary is obtained by
gradually mapping 4 KB pages until a write/read test fails on them. Eventually, the
physmem memory is assigned to the devices /dev/physmem0 and
/dev/physmem1, (see Figure 15.1). During the unloading of the physmem kernel
module, the device is unregistered. The implemented file operations are open(),
close(), mmap(), munmap(), and ioctl(). These are standard Linux system
routines whose synopsis with reference to physmem kernel module are presented
below. The usage of these routines is illustrated by file physmemTest.c in the
physmem package.

In the case of 64 bit machine architecture the physmem memory can be divided into
separate area, so called memory zones. The reason of this is that the BIOS assigns
some memory area to devices like video memory just below of the 4 GB limit. This
part of the memory can not be used by the physmem devices. In this way one of the
physmem devices (generally /dev/physmem1) can be divided into two zones.
Both zones have continuous physical addresses but the “gap” addresses between
the zones can not be used.
ALICE DAQ and ECS manual

Internals of the physmem driver 241
The file operation mmap() can map the physmem devices in two different ways;
usable or full mapping. In the first case the user addresses are continuous for
the usable part of the device. This means that the last user address of a memory
zone is followed by the first user address of the next zone. There is no gap in the
user’s space. To calculate the physical addresses of a given user address one has to
take into account the physical gap between the zones.

In the case of full mapping, the user address space is continuous, i.e. the gap area
contains user address as well. This facilitates the calculation of physical address of a
given user address. On the other hand the user can accidentally read or write from
and to the forbidden gap area, which can lead to system crash.

The two mapping methods can be selected by an ioctl() call before calling
mmap() operation.

open

C Synopsis #include <unistd.h>
#include <fcntl.h>

int open(const char *pathname, int flags)

Description Converts the parameter pathname, which has to be the absolute path of the
physmem device file, into a file descriptor to handle subsequent I/O operations.
Several processes can open this device file. The kernel module counter is always 0.

Figure 15.1 Memory layout of physmem

Linux

/dev/physmem0

kernel parameter

module parameter

module parameter
physmemsize
or by default
automatically

physmemsize0
or by default
96 MB

mem=xxxxM
via the boot-loader

� [� � � � � � � �

Physical Memory

/dev/physmem1

“gap area”
used by system
ALICE DAQ and ECS manual

242 The physmem package
�

Parameters • pathname: pointer to the physmem device file name

• flags: this parameter must include one of the access mode O_RDONLY,
O_WRONLY or O_RDWR. These request opening the physmem area read- only,
write-only, or read/write, respectively.

Returns A new file descriptor (non-negative integer), or -1 if an error occurred.

close

C Synopsis #include <unistd.h>

int close(int fd)

Description Closes the file descriptor fd that was created by function open(). The kernel
module counter is always 0.

Parameter fd: the file descriptor of the physmem device.

Returns Zero on success, or -1 if an error occurred.

mmap

C Synopsis #include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot,
 int flags, int fd, off_t offset)

Description Maps to physmem memory for the address range that is specified by parameter
offset and parameter length in bytes. The memory region is mapped in
multiples of the page size, 4096 bytes. Several processes are allowed to create a
mapping. No initialization of the specified memory region is done. Before calling
mmap() it is mandatory to call function ioctl() with parameter value
PHYSMEM_GETSIZE or PHYSMEM_GETFULLSIZE (see below the description of
ioctl). The ioctl() call informs the driver of the mapping mode: usable or
full mapping (see the introductory part of Section 15.4)

Parameters • start: defines a preferred value for the pointer to be returned, but it is usually
left to 0.It must be a multiple of the page size.

• length: size of the mapped memory area in bytes.

• prot: this argument describes the desired memory protection (and must not
conflict with the open mode of the device) is either PROT_NONE or the bitwise
OR of one or more of the other PROT_* flags:
PROT_EXEC : Pages may be executed.
PROT_READ : Pages may be read.
PROT_WRITE : Pages may be written.
ALICE DAQ and ECS manual

Internals of the physmem driver 243
PROT_NONE : Pages may not be accessed.

• flags: this parameter specifies the type of the mapped object (bits
MAP_FIXED, MAP_SHARED, or MAP_PRIVATE, whereas the latter two bits are
exclusive).

• fd: this parameter is the file descriptor that was produced by the function
open()

• offset: start address in bytes of the mapped physmem memory range. It
should be a multiple of the page size.

Returns A pointer to the mapped area, or -1 if an error occurred. The physmem memory can
be accessed with this returned pointer.

munmap

C Synopsis #include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

Description Releases the mapping to physmem memory for the address range that is specified
by the parameter start and the parameter length in bytes. The region is also
automatically unmapped when the process terminates. On the other hand, closing
the file descriptor does not unmap the region.

Parameters • start: start address of the mapped physmem area, which is the pointer
returned by the function mmap().

• length: size of the mapped memory area in bytes.

Returns Zero on success, or -1 if an error occurred.

ioctl

C Synopsis #include <sys/ioctl.h>
#include “physmem.h”

int ioctl(int fd, int request, void *argument)

Description The sizes and the physical base addresses of the physmem memory and the usable
memory zones can be obtained with this device-specific function. It is mandatory to
call this function with parameter request set to PHYSMEM_GETSIZE or
PHYSMEM_GETFULLSIZE, before calling mmap(). The call not only returns the
requested value, but also informs the driver of the mapping mode: usable or
full mapping (seeSection 15.4).

Parameter • fd: the file descriptor that was created by function open().
ALICE DAQ and ECS manual

244 The physmem package
�

• request: this parameter defines the out parameter argument to be returned.
It can be set to the values: PHYSMEM_GETADDR, PHYSMEM_GETSIZE,
PHYSMEM_GETFULLSIZE, PHYSMEM_GETNUMMEMZONES and
PHYSMEM_GETMEMZONES.

• argument: pointer to the out parameter. Its type, size and value are encoded in
the request parameter. According to the request, the returned values are:

- PHYSMEM_GETADDR: the parameter argument returns the physical address of
the beginning of the physmem device. Its type is unsigned long.

- PHYSMEM_GETSIZE: the parameter argument returns the usable size of the
physmem device where the (possible) holes are not taken into account. Its type is
unsigned long.

- PHYSMEM_GETFULLSIZE: the parameter argument returns the total size of the
physmem device, where the (possible) holes are taken into account, even if the
memory located there cannot be used. Its type is unsigned long.

- PHYSMEM_GETNUMMEMZONES: the parameter argument returns the number of
memory zones used by the device. Its type is unsigned int.

- PHYSMEM_GETMEMZONES: to be called with an allocated array of “number of
memory zones used by the device” elements of type struct memZoneStruct.
The call will populate the given array with the physical start addresses, physical
end addresses and sizes of the different used memory zones.

Returns Zero on success, or -1 if an error occurred.

15.5 Physmem application library

In the following we present the synopsis of the C routines and functions useful to
build programs using physmem area. The physmem_lib.c, physmem_lib.h and
physmem_lib.o files are part of the physmem package.

Before calling any of the following routines one has to include a header file:

#include “physmem_lib.h”

This file contains the type definition of the structures referred in the routines and
the routine’s prototypes. It also has reference to physmem.h header file, which
contains the definitions special to physmem driver.

The physmem memory area can be divided into memory zones as described in
Section 15.4. Only the memory parts inside the zones can be used. A zone is
characterized by its starting and ending addresses. The start address is the address
of the first byte of the zone, the end address is the address of the byte following the
last address of the zone. Several structures are defined in the header files to contain
the physical and the user addresses and offsets of the zones. (the offsets are the
differences of a given address and the start address of the physmem area.)
ALICE DAQ and ECS manual

Physmem application library 245
All of the following routines uses the physmem handler. It is defined by the open
routine and contains the necessary informations for the correct executions of the
other routines.

physmemOpen

Synopsis #include physmem_lib.h

int physmemOpen(physmemHandler_t *device,

int minor,
int full_size)

Description The routine opens the device /dev/physmem<minor> and maps the area
according the value of full_size. It also gets the size, the user and physical
address of physmem area, the coordinates (start and end addresses, and size) of
zones and gaps, and fills this information into the handler structure pointed by
device.

Parameters: • device: this parameter points to device handler to be filled by the routine in
case of successful open.

• minor: this parameter defines the minor number of the physmem device. Its
value could be 0 or 1.

• full_size: this parameter defines the mapping method of the area.

A value of 0 means:

usable mapping: the user addresses are continuous for the whole device.
This means that last user address of a memory zone is followed by the first
user address of the next zone. There is no gap in the user’s space.

A value of 1 means:

full mapping: the user address space is continuous, i.e. the gap area has
user addresses as well.

Return value 0 if the open and mapping was successful, -1 in any other case

physmemClose

Synopsis #include physmem_lib.h

int physmemClose(physmemHandler_t device)

Description The routine removes the memory mapping of the PHYSMEM area referred by
handler device and closes area.

Parameters: • device: the handler of the physmem device defined by a previous call of
physmemOpen() routine.
ALICE DAQ and ECS manual

246 The physmem package
�

Return value 0 if the unmapping and close were successful, -1 in any other case.

physmemPrintZones

Synopsis #include physmem_lib.h

void physmemPrintZones(physmemHandler_t device)

Description The routine displays the start- and end-offsets of all the memory zones of the
physmem area referred by the handler device. The offsets are the differences of the
address of the given zone and the address of the start of the physmem area.

Parameters: • device: the handler of the physmem device defined by a previous call of
physmemOpen() routine.

physmemBlockIsNotContinuous

Synopsis #include physmem_lib.h

int physmemBlockIsNotContinuous(

volatile unsigned int *block_start,
volatile unsigned int *block_end,
physmemHandler_t device,
int *start_status,
int *end_status)

Description The routine investigates if a memory block’s start and end are in the same physmem
memory zone or not. It returns the zone’s (or gap’s) number of the start and end of
block. The memory zones are numbered staring from 0, while the gaps are
numbered by negative numbers starting from -1.

An example of the memory zone and gap numbering:

gap -1 [--zone 0--] gap -2 [--zone 1--] gap -3 [--zone 2--]

i.e. the memory zone N is surrounded by gaps (N-2) and (N-3).

Parameters: • block_start: user address of the block start.

• block_end: user address of the block end (last byte of the block +1).

• device: this parameter points to device handler to be filled by the routine in
case of successful open.

• start_status: returns the number of memory zone (>= 0) or number of gap
(<0) where the block starts

• end_status: returns the number of memory zone (>= 0) or number of gap (<0)
where the block ends
ALICE DAQ and ECS manual

Physmem application library 247
Return value 0 if the start and end of the block is in the same zone, -1 in any other case.

physmemPhysOffset

Synopsis #include physmem_lib.h

unsigned long physmemPhysOffset(unsigned long user_offset,

physmemHandler_t device)

Description This utility routine calculates the physical memory offset from the user offset.

Parameters: • user_offset: user memory offset value.

• device: this parameter points to device handler to be filled by the routine in
case of successful open.

Return value the physical offset, or -1 if no physical address in the physmem area belongs to the
given user offset. It happens if the user address belonging to the user offset is
outside of the physmem memory zones.

physmemUserOffset

Synopsis #include physmem_lib.h

unsigned long physmemUserOffset(unsigned long phys_address,

physmemHandler_t device)

Description This utility routine calculates the user memory offset from the physical address.

Parameters: • user_address: physical memory address value.

• device: this parameter points to device handler to be filled by the routine in
case of successful open.

Return value the user offset, or -1 if no user offset in the physmem area belongs to the given
physical address. It happens if the physical address is outside of the physmem
memory zones.
ALICE DAQ and ECS manual

248 The physmem package
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
16
Utility
packages

This chapter describes the DATE utility packages banksManager,
bufferManager, simpleFifo and recordingLib, their architecture, the API
and the associated procedures and utilities. These packages are included in the
standard DATE kit and are mainly used internally by DATE.

16.1 The banks manager package 250

16.2 The bufferManager package 254

16.3 The simpleFifo package . 259

16.4 The recording library package 264

250 Utility packages
�

16.1 The banks manager package

16.1.1 Introduction

All DATE actors need some support for memory banks. These are handled by the
DATE banksManager package which provides a common, configurable and
flexible interface that includes features such as dynamic sizing and automatic
initialization.

16.1.2 Architecture

The base of the banksManager package is the banks database as defined by the
DATE database package. In the database are listed, role by role, all the banks that
needed to run together with their characteristics (size, type, support). At each start
of run, the rcServer daemon creates (if needed) and initializes the banks required
by the role according to the runtime configuration of the DATE system.

Banks are mapped on each actor running on the given machine in strict order. A
unique ID is given to each bank. Different actors may see the same banks mapped
at different virtual addresses: for this reason, exchange of absolute pointers to
entities contained in the banks is forbidden. Inter-actors exchanges should always
be done using the offset between the beginning of the bank and the pointer plus the
identifier of the bank itself. These two entities are guaranteed to map to the same
object from any process using the banksManager package. A set of macros and
symbols are given to facilitate the procedure.

Code using the banksManager package should be compiled in a DATE
environment, using the DATE symbols and via the DATE makefiles rules. The
include file ${DATE_BANKS_MANAGER_DIR}/banksManager.h should be
included and the library ${DATE_BANKS_MANAGER_BIN}/libBanksManager.a
should be used for linking. The library makes intensive use of the central definition
file ${DATE_COMMON_DEFS}/event.h. It is included automatically if the DATE
compilation rules are used.

16.1.3 Entries and symbols

dateInitControlRegion

C Synopsis #include “banksManager.h”

int DATE_INIT_CONTROL_REGION(hostRole)
int dateInitControlRegion(hostRole, eventId, rcShmId)

Description Initialize the control region. This entry is used only by rcServer. The hostRole
parameter is an ID for the role assumed by the machine. eventId and rcShmId
are the unique IDs for the DATE event and run control block as defined by the
common DATE definitions: they are used to validate the structures of the various
modules wishing to map to the control buffer. The two IDs are written in the
ALICE DAQ and ECS manual

The banks manager package 251
control structure and are verified when any attempt is made to connect to it. On
mismatch (code compiled on different stages or using incompatible DATE
distribution kits) the whole operation is refused. This entry does not allocate
memory banks other than the one needed for the run control block. The macro
DATE_INIT_CONTROL_REGION can be used to call dateInitControlRegion
with the appropriate parameters.

Returns TRUE for success, FALSE on error.

dateMapBanks

C Synopsis #include “banksManager.h”

int DATE_MAP_BANKS(hostRole)
int DATE_MAP_AND_INIT_BANKS(hostRole)
int dateMapBanks(hostRole, eventId, rcShmId, initTheBanks)

Description Map all banks needed for the given role. If initTheBanks is TRUE, the banks are
also initialized (the rcServer is the process that does this automatically at each
start of run). eventId and rcShmId are symbols defined by the DATE central
include file and are used to match the IDs of the event control structure and of the
run control structure as defined during the compilation phase. This ensures that all
actors accessing the banks share the same data structures. Mapping can fail if these
two IDs do not match the value found in the control block (as defined by
dateInitControlRegion).

The macro DATE_MAP_BANKS can be used to call dateMapBanks with the
appropriate IDs. Similarly, DATE_MAP_AND_INIT_BANKS can be used to do the
same and to request to initialize the banks.

Returns TRUE for success, FALSE on error.

BO2V/BV2O

C Synopsis #include “banksManager.h”

void *BO2V(int bankId, int offset)
int BV2O(int bankId, void *address)

Description Macros used to manipulate virtual addresses and their offsets. BO2V takes a bank
ID plus an offset and returns the corresponding virtual address. BV2O takes a bank
ID plus a virtual address to return an offset.
ALICE DAQ and ECS manual

252 Utility packages
�

rcShm/readoutReady/readoutFirstLevel/readoutSecondLevel/
readoutData/edmReady/eventBuilderReady/eventBuilderData/
hltReady/hltDataPages

C Synopsis #include “banksManager.h”

rcShm
 rcShmO
 rcShmSize
 rcShmBank
readoutReady
 readoutReadyO
 readoutReadySize
 readoutReadyBank
readoutFirstLevel
 readoutFirstLevelO
 readoutFirstLevelSize
 readoutFirstLevelBank
readoutSecondLevel
 readoutSecondLevelO
 readoutSecondLevelSize
 readoutSecondLevelBank
readoutData
 readoutDataO
 readoutDataSize
 readoutDataBank
edmReady
 edmReadyO
 edmReadySize
 edmReadyBank
eventBuilderReady
 eventBuilderReadyO
 eventBuilderReadySize
 eventBuilderReadyBank
eventBuilderData
 eventBuilderDataO
 eventBuilderDataSize
 eventBuilderDataBank
hltReady
 hltReadyO
 hltReadySize
 hltReadyBank
hltDataPages
 hltDataPagesO
 hltDataPagesSize
 hltDataPagesBank

Description Pointers, offsets, sizes and banks for the entities handled by the banksManager
package. For the definition of the banks, please refer to the DATE database
package. If the entity is not present, the pointer will be NULL, offset and bank will
be set to -1, and the size will be set to 0.
ALICE DAQ and ECS manual

The banks manager package 253
edmInput/recorderInput

C Synopsis #include “banksManager.h”

void *edmInput
void *recorderInput

Description FIFOs used as input to the corresponding actor. Their actual value depends on the
runtime configuration of DATE.

physmemAddr/physmemBank

C Synopsis #include “banksManager.h”

void *physmemAddr
int physmemBank
int physmemNumZones
struct memZonesStruct *physmemZones

Description Physical address, bank ID, number of zones and descriptions of the memory zones
used for the PHYSMEM driver. Respectively NULL, -1, 0 and NULL if not loaded.

When physmemNumZones is zero or one, there are no gaps in the address range of
the PHYSMEM zone. When physmemNumZones is > 1 s (e.g. when the system has
more than 4 GB of RAM and where the starting physical address of the PHYSMEM
memory block is below the 4 GB memory limit) then special care must be taken to
avoid the gaps in the address range of PHYSMEM.: in this case, the description of the
memory zones within PHYSMEM is given in the array physmemZones (see
Section 15.4).

16.1.4 Internals

The banksManager package is self-contained in the
${DATE_BANKS_MANAGER_DIR} directory. This directory contains the buffer
manager module, a utility to dump the runtime configuration and the makefile for
the package. No special setup is required. The banksManager package needs the
database, runControl, physmem, bufferManager and simpleFifo packages
to compile and link.

When running in environments with multiple PHYSMEM zones (e.g. when the
system has more than 4 GB of RAM and where the starting physical address of the
PHYSMEM memory block is below the 4 GB memory limit) special care must be
taken to handle the memory hole created by the BIOS between the 3.3 GB and the 4
GB marks. In these cases, the variable physmemNumZones contains a value > 1 and
the array physmemZones contains the description of each zone.

Compilation of the package is straightforward and requires no additional setup.
The compilation symbol XTRA_CHECKS can be used to run more intensive run-time
checks on the parameters and on the buffer itself. This symbol should not be
defined for production.
ALICE DAQ and ECS manual

254 Utility packages
�

The dumpBanks utility (see Section 4.3.6) can be used to inspect the runtime
configurations of the DATE banks.

16.2 The bufferManager package

16.2.1 Introduction

The DATE bufferManager package provides the support for allocation and
deallocation of memory coming from a common buffer via a lightweight protocol.
The DATE architecture needs an efficient single-producer, multiple-consumers
buffer manager. The DATE bufferManager package fulfills these requirements.

The basic element of a bufferManager entity is a shared memory block to
support the whole mechanism. No other resources (from DATE or from the
Operating System) are needed. Inter-process synchronization is made via this
shared memory block and it is based on linear test-and-set procedures. The package
itself is never spin locking: this is left - if needed - at the caller’s level.

16.2.2 Architecture

The bufferManager package uses the resources provided by the caller level,
namely a memory block to be managed. This block must be shared between all
actors who need access to it. A buffer can have only one producer (allocating
memory blocks) and multiple consumers (deallocating memory blocks). A
producer process can also act as a consumer process, although this feature is not
part of the user requirement and may therefore be dropped in future releases of the
package. External packages (e.g. the DATE simpleFifo package) must be used to
transfer pointers to the memory blocks allocated by the bufferManager package
between processes.

A memory block allocated by this package can be used as conventional dynamic
memory (same features as for memory allocated via the malloc system call). Any
kind of data can be stored in these memory blocks. The only constraint is on
memory pointers. As the Operating System may map on multiple processes the
same memory block at different virtual addresses, special care must be taken to
avoid sharing of virtual pointers. If the exchange of pointers is required, memory
offsets (difference between the virtual address to exchange and the start virtual
address of the memory block) must be specified together with a protocol to indicate
the proper start virtual address. Here DATE assumes that all shared memory blocks
are allocated via the banksManager package and a set of standard calls and
macros are available to facilitate the task. If this is not the case, it is up to the caller
to establish an alternate protocol to exchange virtual pointers.

When standard DATE buffers are used as support for the bufferManager
package, the dateBanks package will automatically initialize them at run time as
soon as they are created. If the bufferManager package has to work on
non-standard DATE buffers, special care must be taken to initialize the buffer in the
appropriate sequence and to avoid out-of-sequence accesses to the same object, an
action that may give unpredictable results.
ALICE DAQ and ECS manual

The bufferManager package 255
With the exception of bmInit, all entries where a buffer pointer is given as a
parameter assume that this pointer has been used for a previous, successful call to
bmInit. Little or no run-time checks are made on the validity of this and other
parameters.

The routine bmInit handles memory blocks allocated in PHYSMEM in such a way to
avoid gaps in the address range (if any). The procedure used is to initialise the
buffer and immediately allocate a memory block that spans across the memory
gap(s) eventually present in the memory block. DATE actors will therefore never
receive a memory block that includes any location belonging to these gap(s).

The library implemented by the bufferManager package provides three sets of
entries: one set for the producer process (who allocates blocks), one set for the
consumer processes (who deallocate blocks) and one set common between all
classes of processes. As the producer may also act as a consumer process, all calls
relative to consumers are also available to the producer. Special care must be taken
to use the set of entries appropriate to the role of each process.

Due to the way compilers work on several architectures, it is recommended to keep
all sizes (memory blocks, memory buffers) aligned to 32 bit. Failure to do so may
result in raising of several signals (SIGSEGV, SIGBUS) in the calling process.

Code using the bufferManager package should be compiled in a DATE
environment, using the DATE symbols and via the DATE makefiles rules. The
include file ${DATE_BM_DIR}/dateBufferManager.h should be included and
the library ${DATE_BM_BIN}/libDateBufferManager.a should be used for
linking.

16.2.3 Common entries

bmGetVersionId

C Synopsis #include “dateBufferManager.h”

char *bmGetVersionId(void)

Description Inquiry for the version ID of the package.

Returns Pointer to static string.

bmGetError

C Synopsis #include “dateBufferManager.h”

char *bmGetError(void)

Description Inquiry for the string describing the last error occurred in the library. This string is
in common between all buffers handled by the package and it is overwritten at each
call made to the library.
ALICE DAQ and ECS manual

256 Utility packages
�

Returns Pointer to a static string.

16.2.4 Producer entries

bmInit

C Synopsis #include “dateBufferManager.h”

int bmInit(void *buffer, int sizeOfBuffer)

Description The memory block pointed to by buffer and of size sizeOfBuffer is initialized
to be used as support for a buffer entity. The buffer pointer should contain the
address of a memory block of at least sizeOfBuffer bytes. This entry should not
be called when the same buffer is already in use as a memory buffer by other
processes. For standard DATE buffers, this entry is called automatically when the
buffer itself is created by the dateBanks package. No checks are made on the
validity of the pointer or on the availability of the memory block.

Returns TRUE on successful completion, FALSE on error.

bmValidate

C Synopsis #include “dateBufferManager.h”

int bmValidate(void *buffer)

Description Check the structure of a buffer for correctness. This entry should be used to
guarantee (up to a minimal level) the good status of the buffer in case memory
corruption(s) are suspected. The check uses system resources and should therefore
be avoided in environments where efficiency is an issue.

Returns TRUE if the buffer looks OK, FALSE otherwise.

bmAllocate

C Synopsis #include “dateBufferManager.h”

void *bmAllocate(void *buffer, int sizeOfBlock)

Description A block of at least sizeOfBlock bytes is allocated (if possible) from the given
buffer. The library may fail to allocate for a given size - even if the buffer itself has
enough space - whenever the data set is split into smaller subsets.

Returns -1 for fatal error, NULL if there is not enough free space in the buffer. Otherwise a
pointer to the allocated memory block.
ALICE DAQ and ECS manual

The bufferManager package 257
bmResize

C Synopsis #include “dateBufferManager.h”

int bmResize(void *block, int newSize)

Description The block pointed to by block is - if possible - resized to newSize bytes. The block
must have been previously allocated to contain at least newSize bytes (see the
entry bmAllocate).

Returns TRUE for success, FALSE on error.

bmDefragment

C Synopsis #include “dateBufferManager.h”

int bmDefragment(void *buffer)

Description The buffer pointed by buffer is thoroughly defragmented. This procedure can be
used during quiescent phases - where the buffer is not in use - to repack distributed
blocks of memory. The process is linear, does not move memory around the buffer
and does not affect blocks eventually allocated.

Returns TRUE for success, FALSE on error.

bmGetBlocksInUse

C Synopsis #include “dateBufferManager.h”

int bmGetBlocksInUse(void *buffer)

Description Count the number of blocks currently allocated in the given buffer.

Returns Number of allocated blocks on success, -1 on error.

bmGetTotalSpace

C Synopsis #include “dateBufferManager.h”

int bmGetTotalSpace(void *buffer)

Description Count the maximum number of bytes available in the given buffer.
ALICE DAQ and ECS manual

258 Utility packages
�

Returns Maximum number of available bytes on success, -1 on error.

bmGetAvailableSpace

C Synopsis #include “dateBufferManager.h”

int bmGetAvailableSpace(void *buffer)

Description Count the number of bytes currently available in the given buffer. Due to possible
fragmentation of the buffer, this may not be the maximum size that can be allocated
via the bmAllocate call but only an upper bound.

Returns Number of available bytes on success, -1 on error.

bmGetNumAllocations

C Synopsis #include “dateBufferManager.h”

int bmGetNumAllocations(void *buffer)

Description Count the number of allocation requests made to the buffer since the last call to
bmInit.

Returns Number of allocations on success, -1 on error.

bmGetNumFulls

C Synopsis #include “dateBufferManager.h”

int bmGetNumFulls(void *buffer)

Description Count the number of allocation requests rejected due to lack of space made to the
buffer since the last call to bmInit.

Returns Number of failed allocations on success, -1 on error.

16.2.5 Consumer entries

bmDeallocate

C Synopsis #include “dateBufferManager.h”

int bmDeallocate(void *block)
ALICE DAQ and ECS manual

The simpleFifo package 259
Description The block pointed by block is deallocated. The package assumes that the block has
been previously allocated via a bmAllocate call.

Returns TRUE on success, FALSE on error.

16.2.6 Internals

The package is self-contained in the ${DATE_BM_DIR} directory. This folder
contains the buffer manager module, a validation program and the makefile for the
package. No special setup is required.

Compilation of the package is straightforward and requires no additional setup.
The compilation symbol XTRA_CHECKS can be used to run more intensive run-time
checks on the parameters and on the buffer itself. This symbol should not be
defined for production.

The bufferManager package needs the database, runControl, physmem,
banksManager and simpleFifo packages to compile and link.

The dateBufferManagerValidate program can be used to validate the
dateBufferManager library. It should be run without parameters to execute an
extensive suite of tests and exit with an appropriate status message. See Listing 16.1
for an example run.

16.3 The simpleFifo package

16.3.1 Introduction

Multi-process systems need inter-process synchronization tools. The DATE
package requires a fast, lightweight exchange of data between process pairs (one
data producer and one data consumer). The simpleFifo package fulfills this
requirement.

The basic element of a simpleFifo is a memory block to support the whole
mechanism. No other resources (from DATE or from the Operating System) are
needed. Inter-process synchronization is made via this shared memory block and it
is based on linear test-and-set procedures. The package itself is never spin locking:
this is left - if needed - at the caller’s level.

Listing 16.1 Example of dateBufferManagerValidate run

1: > DATE buffer manager validator starting
2: dateBufferManager.c: single-producer multiple-consumer buffer handler

V 1.2 compiled Sep 20 2002 17:15:38
3: DATE buffer manager validator completed
ALICE DAQ and ECS manual

260 Utility packages
�

16.3.2 Architecture

The simpleFifo package implements a simpleFifo entity using a shared
memory block provided by the caller. This block is partitioned into a control block
and a data block. The simpleFifo entity can then be used to exchange blocks of
arbitrary size in a first-in first-out fashion.

A simpleFifo allows exactly one data producer and one data consumer. It
provides a set of calls for the data producer, a set for the consumer and a third set
common for producer and consumer.

With the exception of fifoDeclare, all entries where a buffer pointer is given as a
parameter assume that this pointer has been used for a previous, successful call to
fifoDeclare. Little or no run-time checks are made on the validity of this
parameter.

Due to the way compilers work on several architectures, it is recommended to keep
all sizes (memory block, FIFO head, FIFO tail) aligned to 32 bit. Failure to do so
may result in raising of several signals (SIGSEGV, SIGBUS) in the calling process.

Code using the simpleFifo package should be compiled in a DATE environment,
using the DATE symbols and via the DATE makefiles rules. The include file
${DATE_SIMPLEFIFO_DIR}/simpleFifo.h should be included and the library
${DATE_SIMPLEFIFO_BIN}/libFifo.a should be used for linking.

16.3.3 Common entries

fifoGetVersionId

C Synopsis #include “simpleFifo.h”

char *fifoGetVersionId(void)

Description Inquiry for the version ID of the package.

Returns Pointer to a static string.

fifoDeclare

C Synopsis #include “simpleFifo.h”

int fifoDeclare(void *buffer, int sizeOfBuffer)

Description The memory block pointed to by buffer and of sizeOfBuffer size is initialized
to be used as support for a simpleFifo entity. The buffer pointer should contain
the address of a memory block of at least sizeOfBuffer bytes. This entry should
not be called when the same buffer is already in use as a simpleFifo by other
ALICE DAQ and ECS manual

The simpleFifo package 261
processes. No checks are made on the validity of the pointer or on the availability of
the memory block.

Returns 0: successful completion, -1 on error.

fifoGetSize

C Synopsis #include “simpleFifo.h”

int fifoGetSize(void *buffer)

Description Inquiry for the size of the data partition of thesimpleFifo pointed by buffer.

Returns Size in bytes of the data block of the FIFO.

fifoCheck

C Synopsis #include “simpleFifo.h”

int fifoCheck(void *buffer)

Description Check the structure of a simpleFifo for correctness. This entry should be used to
guarantee (up to a minimal level) the good status of the simpleFifo in case
memory corruption(s) are suspected. The check uses system resources and should
therefore be avoided in environments where efficiency is an issue.

Returns TRUE if the FIFO is OK, FALSE otherwise.

fifoGetOccupancy

C Synopsis #include “simpleFifo.h”

int fifoGetOccupancy(void *buffer)

Description Get the occupancy of the given FIFO.

Returns Occupancy in percentage (100: completely full, 0: completely empty).

fifoIsEmpty

C Synopsis #include “simpleFifo.h”

int fifoIsEmpty(void *buffer)
ALICE DAQ and ECS manual

262 Utility packages
�

Description Test the given FIFO for presence of data.

Returns TRUE if the FIFO is empty, FALSE otherwise.

16.3.4 Producer entries

fifoGetFree

C Synopsis #include “simpleFifo.h”

void *fifoGetFree(void *buffer, int neededSize)

Description Get a pointer to a data block for the given size from the head of the FIFO. This block
can be used for whatever purposes the caller may need, as long as its maximum
size is respected. When done, the producer should validate the block in order to
make it available to the consumer.

Returns NULL if there is no available datablock for the requested size, -1 if the request is not
valid for the FIFO, otherwise pointer to a memory block. If the entry returns NULL,
it is up to the caller to take appropriate action (retry, sleep and retry, etc.). It is
possible for this entry to return NULL followed by -1.

fifoValidate

C Synopsis #include “simpleFifo.h”

void fifoValidate(void *buffer, int actualSize)

Description The head of the FIFO previously allocated with fifoGetFree is made available to
the consumer. This block can be resized to the given actualSize that must be at most
as big as the allocated size during fifoGetFree. The procedure must take care
that all accesses to this location may - from now on - conflict with other processes -
including itself.

16.3.5 Consumer entries

fifoHasData

C Synopsis #include “simpleFifo.h”

int fifoHasData(void *buffer)

Description Poll the FIFO for data.
ALICE DAQ and ECS manual

The simpleFifo package 263
Returns TRUE if data is available, FALSE otherwise.

fifoGetFirst

C Synopsis #include “simpleFifo.h”

void *fifoGetFirst(void *buffer)

Description Get the pointer to the tail of the FIFO. This pointer points to a memory block of
arbitrary size. The actual size of the element head of the FIFO must be worked out
by the caller.

Returns Pointer to the tail of the FIFO, NULL if the FIFO is empty.

fifoSetFree

C Synopsis #include “simpleFifo.h”

void fifoSetFree(void *buffer, int size)

Description The tail of the FIFO is made available to the data producer. The block is assumed to
have the given size, as specified by the caller.

16.3.6 Internals

The package is self-contained in the ${DATE_SIMPLEFIFO_DIR} directory. This
folder contains the FIFO handler module, a validation package, a simple
performance measurement program and the makefile for the package. No special
setup is required, the package is entirely self-contained and does not require other
packages to compile and link.

Compilation of the package is straightforward and requires no additional setup.
The compilation symbol DEBUG can be used to produce some output on stdout in
case of error. This symbol should not be used for production.

The simpleFifoValidate program can be used to validate the simpleFifo
library. It should be run on the same machine in two copies, one producer and one
consumer. The procedure will run the given number of loops with basic
simpleFifo operations (including some runtime checks) and exit with an
appropriate status message. See Listing 16.2 for an example run.
ALICE DAQ and ECS manual

264 Utility packages
�

16.4 The recording library package

16.4.1 Introduction

Actors running in a DATE environment may need to record raw events on local or
remote systems. DATE provides two standard recording libraries. They both allow
efficient and tailored output of raw DATE events on a wide set of data channels
(raw files, named pipes and network channels) and for all type of DATE events
(streamlined, paged, fully-built events).

16.4.2 The low-level recording library

The low-level recording library is used by processes who need full control over
their output channels. This is the case, for example, for the eventBuilder process
on the GDC. The low-level recording library is able to handle a set of channels (for
multiple parallel output streams) and allows both synchronous and asynchronous
output.

16.4.2.1 The callable interface

The callable interface is defined by the C include file
${DATE_RECORDLIB_DIR}/recordingLib.h. This file must be used within a
standard DATE environment in order to compile the calling program.

The library is capable of handling multiple channels. All operations must indicate
which channel they are related to. This is done with an index in the range
[0 .. maxChannel-1], where maxChannel is the value returned by the library call
recordingLibDeclareDevice. For some entries, it is possible to use the
pre-defined symbol ALL_CHANNELS: in this case the entry operates on all channels
that have been declared.

The library allows a completion handler routine to be declared. This will run as a
coroutine as soon as any I/O completes.

Each outstanding output can have an optional user pointer. This is the address of
an anonymous block of data associated to the channel, usually describing a data
structure related to the pending output. The caller program can - at any time - set or
get the user pointer associated to any channel. Normal usage is to declare the user

Listing 16.2 Example of simpleFifoValidate run

1: > ${DATE_SIMPLEFIFO_BIN}/simpleFifoValidate p 100&
2: [1] 9606
3: FIFO V 1.03 validation producer side starting
4: > ${DATE_SIMPLEFIFO_BIN}/simpleFifoValidate c 100
5: FIFO V 1.03 validation consumer side starting
6: Producer: consumer started
7: Consumer: producer started
8: Producer: test completed OK. Sleeps: 2050836.000000. Checks: 3.
9: Consumer: test completed OK. Sleeps: 2459685.000000. Checks: 2.
10: [1]+ Done ${DATE_SIMPLEFIFO_BIN}/simpleFifoValidate p 100
ALICE DAQ and ECS manual

The recording library package 265
pointer during the setup of a write operation and to retrieve it at the end of the
operation.

This library makes use of the DATE database package. The corresponding library
must be included in the linking stage of the user code.

The library makes use of the DATE infoLogger package. The appropriate library
must be included in the linking stage of the user code. Normal log messages are
issued using the recordingLib stream. Error and fatal messages are also
recorded onto the runLog stream.

The shared memory control region is updated by the library. The run parameters
runNumber, maxFileSize, ldcSocketSize and maxEventSize are used for
setup and run-time checks. The counters fileCount, bytesRecorded and
eventsRecorded are updated at run-time.

All sizes used in this library are expressed in bytes.

recordingLibDeclareDevice

C Synopsis #include “recordingLib.h”

int recordingLibDeclareDevice(char *recordingDevice)

Description Declare the output channel(s) according to the given recordingDevice. The
syntax of the recording device follows the conventions described in Section 10.2.

Returns The number of channels corresponding to the recording device (zero for error).

recordingLibOpenChannel

C Synopsis #include “recordingLib.h”

int recordingLibOpenChannel(int channel)

Description Open the channel with the given ID (ALL_CHANNELS: all channels are opened). If
the call fails, the channel(s) is/are left in closed state.

Returns TRUE on success, FALSE on error.

recordingLibCloseChannel

C Synopsis #include “recordingLib.h”

int recordingLibCloseChannel(int channel)
ALICE DAQ and ECS manual

266 Utility packages
�

Description Close the given channel (or all the channels if ALL_CHANNELS is used as channel
ID). On error, the channel(s) is/are left in an undefined state (all channels that can
be closed are closed).

Returns TRUE on success, FALSE on error.

recordingLibSetCallback

C Synopsis #include “recordingLib.h”

int recordingLibSetCallback(void callback(int channel))

Description Declare the routine to be called on completion for each output. The routine will
receive the channel ID as the input parameter.

Returns TRUE on success, FALSE on error.

recordingLibStartSOR

C Synopsis #include “recordingLib.h”

int recordingLibStartSOR(void)

Description Declare the beginning of the “start of run” phase.

Returns TRUE on success, FALSE on error.

recordingLibEndSOR

C Synopsis #include “recordingLib.h”

int recordingLibEndSOR(void)

Description Declare the end of the “start of run” phase.

Returns TRUE on success, FALSE on error.

recordingLibSetupWrite

C Synopsis #include “recordingLib.h”

int recordingLibSetupWrite(int channel,
ALICE DAQ and ECS manual

The recording library package 267
 void *buffer,
 int length,
 void *uptr)

Description Setup the write for the given channel of the data in the given buffer for the given
size. The given user pointer can be retrieved at any time during and after the
output.

Returns TRUE on success, FALSE on error.

recordingLibSetupWriteV

C Synopsis #include <sys/uio.h>
#include “recordingLib.h”

int recordingLibSetupWriteV(int channel,
 struct iovec *iov,
 int iovcnt,
 void *uptr)

Description Setup the write for the given channel of the data in the given I/O vector of the
specified length. The given user pointer can be retrieved at any time during and
after the output. For more details on the iovec structure, see the man page relative
to the writev Unix system call.

Returns TRUE on success, FALSE on error.

recordingLibWriteNext

C Synopsis #include “recordingLib.h”

int recordingLibWriteNext(int channel)

Description Write the next data on the given channel. If the channel is set as non-blocking, the
call writes only what is possible to write without blocking the operation. If the
channel is set as blocking, the call will stall until the write is completed.

Returns The number of bytes written, zero if none, -1 on error.

recordingLibSetUptr

C Synopsis #include “recordingLib.h”

int recordingLibSetUptr(int channel,
 void *uptr)
ALICE DAQ and ECS manual

268 Utility packages
�

Description Set the user pointer associated to the given channel.

Returns TRUE on success, FALSE on error.

recordingLibGetUptr

C Synopsis #include “recordingLib.h”

void *recordingLibGetUptr(int channel)

Description Get the user pointer associated to the given channel.

Returns The user pointer associated to the channel (either via recordingLibSetUptr or
during the recordingLibSetupWrite/recordingLibSetupWriteV call),
NULL if not set or on error.

recordingLibSetPortNumber

C Synopsis #include “recordingLib.h”

int recordingLibSetPortNumber(int port)

Description Set the TCP/IP port number to be used for network channels. This call affects only
the channels that have not yet been opened.

Returns TRUE on success, FALSE on error.

recordingLibSetBlocking

C Synopsis #include “recordingLib.h”

int recordingLibSetBlocking(int blockingMode)

Description Set the channels as blocking (blockingMode TRUE) or non-blocking
(blockingMode FALSE).

Returns TRUE on success, FALSE on error.
ALICE DAQ and ECS manual

The recording library package 269
recordingLibGetChannelName

C Synopsis #include “recordingLib.h”

char *recordingLibGetChannelName(int channel)

Description Get the name of the given channel.

Returns String containing the name of the channel on success, NULL on error.

recordingLibGetFd

C Synopsis #include “recordingLib.h”

int recordingLibGetFd(int channel)

Description Get the number associated to the given channel as returned by the Unix open
system call.

Returns Number of file descriptor on success, -1 if the channel is closed or on error.

recordingLibGetNumWrites

C Synopsis #include “recordingLib.h”

int recordingLibGetNumWrites(int channel)

Description Get the number of write operations requested on the given channel.

Returns Number of operations requested, -1 on error.

recordingLibGetNumBytes

C Synopsis #include “recordingLib.h”

long64 recordingLibGetNumBytes(int channel)

Description Get the number of bytes written through the given channel.

Returns Number of bytes written, -1 on error.
ALICE DAQ and ECS manual

270 Utility packages
�

recordingLibGetChannelByGdcId

C Synopsis #include “event.h”
#include “recordingLib.h”

int recordingLibGetChannelByGdcId(eventGdcIdType gdcId)

Description Get the ID of the channel associated to the given GDC ID.

Returns ID of the channel, -1 on error.

recordingLibDumpDatabase

C Synopsis #include “recordingLib.h”

void recordingLibDumpDatabase(void)

Description Dump the content of the library database via an infoLogger stream.

16.4.3 The high-level recording library

The high-level recording library provides an abstract access layer to the low-level
recording library. The recorder process running on the LDCs uses the high-level
recording library. The high-level recording library can handle only DATE raw
events and uses an approach similar to the one implemented in the low-level
recording library. Basically, a set of channels is handled all together and many
events can be sent simultaneously and asynchronously to any of the open channels.
The library then handles the relations with the guest Operating System to queue
and perform in parallel all the outstanding transfers. The dynamic resources
associated to the calling process are used to adapt to the operating conditions. The
library also handles the association of the event to the appropriate output channel.

16.4.3.1 The callable interface

The callable interface is defined by the C include file
${DATE_RECORDLIB_DIR}/dateRec.h. This file must be included in a standard
DATE environment in order to compile the calling program.

All conventions valid for the low-level recording library (see Section 16.4.2 above)
are also valid for the high-level recording library.

This library makes use of the DATE database package, the DATE infoLogger
package, and the low-level recording library. The file
${DATE_RECORDINGLIB_BIN}/libDateRec.a should be used to link the
calling code.

The library issues log messages using the infoLogger dateRec stream. Errors
are also sent to the infoLogger runLog stream.
ALICE DAQ and ECS manual

The recording library package 271
The run parameter recordingDevice is used by this library (in addition to all the
parameters and counters handled by the low-level recording library).

dateRecInit

C Synopsis #include “dateRec.h”

int dateRecInit(void)

Description Initialize the library. Can be called only once in the lifetime of the calling process.

Returns 0 on success, non-zero on error.

dateRecSetup

C Synopsis #include “dateRec.h”

int dateRecSetup(void *event, void *userPtr)

Description Initialize the transfer of the given DATE event. The given user pointer will be
returned whenever the transfer is either completed or aborted.

Returns 0 on success, non-zero on error.

dateRecGetCompleted

C Synopsis #include “dateRec.h”

int dateRecGetCompleted(int timeout,
 void **event,
 void **userPtr)

Description Get the data relative to the next completed transfer (if any). The timeout can be
equal to 0 (do not wait), -1 (wait forever) or the minimum amount of milliseconds
to wait for the next available completed transfer (the actual wait time could exceed
the given value for fragmented outputs or for heavy loaded systems). The event
pointer must be provided while the userPtr pointer can be NULL.

Returns 0 on success, non-zero on error. If an output has been completed, the event pointer
will contain the address of the data written, otherwise NULL will be returned. The
event pointer will always be overwritten using whatever value was given in the
transfer setup routine.
ALICE DAQ and ECS manual

272 Utility packages
�

dateRecGetNumPendings

C Synopsis #include “dateRec.h”

int dateRecGetNumPendings(void)

Description Get the number of outstanding write operations.

Returns Number of outstanding operations (completed, in progress or pending), 0 if none.

dateRecShutdown

C Synopsis #include “dateRec.h”

int dateRecShutdown(int forceShutdown)

Description Close all channels in a graceful way (forceShutdown FALSE) or by aborting all
outstanding operations (forceShutdown TRUE): aborted writes can be retrieved
via the dateRecGetAborted call described below.

Returns 0 on success, non-zero on error (or on the impossibility of shutting down the system
due to pending operations and forceShutdown set to FALSE).

dateRecGetNumAborted

C Synopsis #include “dateRec.h”

int dateRecGetNumAborted(void)

Description Get the number of write operations aborted due to errors that can be retrieved via
the dateRecGetAborted call.

Returns Number of aborted operations, 0 if none.

dateRecGetAborted

C Synopsis #include “dateRec.h”

int dateRecGetAborted(void **event, void **userPtr)

Description Get the data associated to the next aborted operation. This call can be iterated to get
- one by one - all outstanding aborted operations.
ALICE DAQ and ECS manual

The recording library package 273
Returns 0 on success, non-zero on error.

dateRecLastError

C Synopsis #include “dateRec.h”

char *dateRecLastError(void)

Description Get a string describing the last error encountered by the library.

Returns Pointer to a zero-terminated static string.

16.4.4 Internals

The two recording libraries (high-level and low-level) are self-contained in the
${DATE_RECORDLIB_DIR} directory. This folder contains the low-level and the
high-level recording libraries, the two include files and a small validation program.

The validator.c program tests the capability of the low-level recording library
to handle a set of parallel output local files. It can be called with several optional
parameters the most important of which is the target directory (default:
“/tmp/recordingLibValidation”) used to create the test files. This area must
be big enough to store several megabytes of raw data that will be created by the
validation program and removed upon termination. Run the program with
parameter “-?” for a complete list of the available options.
ALICE DAQ and ECS manual

274 Utility packages
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
17
Interfaces

This chapter discusses the interfaces of DATE with other systems.

17.1 Interface with the Trigger System 276

17.2 Interface to the High-Level Trigger 277

17.3 Interface to AliEn and the Grid 283

17.4 File Exchange Server. 286

17.5 Interface to the Shuttle. 288

276 Interfaces
�

17.1 Interface with the Trigger System

The trigger system provides the synchronization between the experiment and the
data acquisition. It identifies the events that are supposedly worth to be read out
and activates the data–acquisition system. This role of the Trigger is documented in
Chapter 8.

The Trigger system is also a source of data that is read-out by the DAQ. The ALICE
Central Trigger Processor will generate three data streams to the DAQ:

1. the CTP event fragment sent for every Trigger Level 2 accept (L2a) consists of 8
words carrying the same information that is broadcast to all the participating
sub-detectors through the TTC B-channel. The format of the data is given in
Figure 17.1.

2. the interaction record (see Figure 17.2) consists of:

• a two-word header, consisting of an orbit number (first orbit of the record)
and an Err flag, asserted if there is a gap just before the record in the
continuous sequence of interaction records (under normal circumstances,
the DAQ should receive interaction records for all LHC orbits).

• a maximum of 250 words containing bunch crossing numbers in which
interactions have been detected with InT flag set to zero (0) for peripheral
events or set to 1 for semi-central interactions.

• an optional incomplete record word, present when there are more than 250
interactions, indicated by a virtual bunch crossing number equal to 4095.

Figure 17.1 The format of the CTP event data.
ALICE DAQ and ECS manual

Interface to the High-Level Trigger 277
The CTP event fragments and the interaction record data shall be generated by the
CTP and transmitted to the DAQ via the ALICE DDL. The hardware and the
communication procedure shall be standard - identical to the channels that transmit
the sub-detector readout. The nature of the data, and the timing and rate of their
generation, on the other hand, differ significantly from the sub-detector readout
and shall be formatted by a “customized” data format as indicated before.

The CTP Readout will contribute to the event-building task. It is a redundant
channel that carries exactly the same information broadcast, at the time of an L2a
decision, to all the participating sub-detectors (L2a Message). It will be used by the
ALICE data-driven DAQ system to resolve error conditions.

The Interaction Record is an aid to the pattern recognition task. The generation of
the record is continuous, rather than “triggered” by any CTP or DAQ action. The
data do not “interfere” with any on-line operation - they only need to be archived
for the off-line use.

17.2 Interface to the High-Level Trigger

The overall architecture of the Trigger, DAQ and High-Level Trigger (HLT) systems
is illustrated in Figure 17.3.

Figure 17.2 The format of interaction records.
ALICE DAQ and ECS manual

278 Interfaces
�

The data-acquisition system takes care of the data flow from the DDL up to the
storage of data on the PDS system.

The task of the HLT system is to select the most relevant data from the large input
stream and to reduce the data volume by well over an order of magnitude in order
to fit the available storage bandwidth, while preserving the physics information of
interest. This is achieved by a combination of event selection (triggering), data
compression, or selection of Regions of Interest with partial detector readout. While
executing either of these tasks, the HLT may also generate data to be attached to or
partially replacing the original event.

Care has been taken not to impose any architectural constraints which could
compromise the HLT filtering efficiency, knowing that event selection will become
more and more elaborated during the experiment lifetime. This way, filtering may
be introduced in progressively sophisticated steps without affecting the
performance and the stability of the data-acquisition system.

17.2.1 DAQ-HLT interface

A schematic view of the DAQ-HLT interface is illustrated in Figure 17.4.

Figure 17.3 TRIGGER-DAQ-HLT overall architecture.

GDC GDCGDCGDC

CTP

LTU

TTC

FERO FERO FERO FERO

LTU

TTC

FERO FERO

LDCLDCLDC

BSY BSY

Rare/All

File

Storage Network

TDSTDS

PDSPDS

L0, L1a, L2

L0, L1a, L2

D-RORCD-RORCD-RORCD-RORC

EDM

LDC

D-RORC D-RORC

Load
Balancing

LDC LDC

D-RORC D-RORC

HLT Farm

FEPFEP

H-RORC H-RORC

343 DDLs
25 GB/s

Event Building Network

10 DDLs

Detector LDC HLT LDC

144 DDLs
1 GB/s

Event Fragment

Sub-event

Event

343 DDLs
25 GB/s

2.5 GB/s

1.25 GB/s
ALICE DAQ and ECS manual

Interface to the High-Level Trigger 279
The hardware interface is based on the DDL and its DIU/SIU cards, the same
components used to transfer data from the detector electronics to the
data-acquisition system.

The DAQ system is implemented within a coherent hardware and software
framework, with the HLT system operating as an external system, as shown in
Figure 17.5.

Every D-RORC sitting in the LDC can host two DIUs. These on-board DIUs can be
used in two ways: both can be connected to the front-end electronics and serve as
two readout link, or one DIU can be connected to the front-end electronics while
the other is able to transfer a copy of all the raw data to the HLT RORC (H-RORC)
sitting in the HLT computers, through the standard DDL. The H-RORC receives all

Figure 17.4 DAQ-HLT interface schematic view.

Detector
Readout
Detector
Readout

DDL

Storage
System

Storage
System

HLTHLT

DDL

DDL

D-RORCD-RORC

DAQDAQ

Figure 17.5 DAQ-HLT Data Flow overview.

LDC D-RORC
DDL DIU DDL SIU

LDC D-RORC
DDL DIU DDL SIU

D-RORC
DDL DIU DDL SIU

GDC GDCGDCGDC GDC

Event Building Network

LDC D-RORC
DDL DIU

LDC D-RORC
DDL DIU

D-RORC
DDL DIU

Detector
Readout
Electronics

DDL SIU

Detector
Readout
Electronics

DDL SIU

HLT Farm

FEP H-RORC
DDL DIU

DDL SIUHLT Farm

FEP H-RORC
DDL DIU

HLT Farm

FEP H-RORC
DDL DIU

FEP H-RORC
DDL DIU

DDL SIU

Storage
ALICE DAQ and ECS manual

280 Interfaces
�

the raw data as it has received from the front-end electronics. All the LDCs
dedicated to the detectors which make use of the HLT system are equipped with
D-RORCs working in the second mode. These are called Detector LDCs. The
interface between the DAQ and the HLT system is the DIU output on the H-RORC.

17.2.2 HLT-DAQ interface

After running the HLT algorithms, the HLT computers transfer the result of the
processing, the trigger decisions, and the compressed data to the DAQ system,
using again standard DDLs. Here the interface is the SIU input.

The GDCs receive the sub-events from the Detector LDCs and any additional data
generated by the HLT computers from the LDCs dedicated to the HLT, called HLT
LDCs. The DATE software can accept as many data channels from the LDCs
dedicated to the HLT as required, since it handles these channels as additional LDC
data paths.

The HLT LDCs will also receive messages specifying whether to discard or accept a
given event. Furthermore, for accepted events, the HLT decision can specify the
new pattern of sources for a given event, resulting in a partial readout of the raw
data. A decision broker process, running on the HLT LDCs, will transfer the HLT
information and decision to a decision agent process, running on the detector
LDCs, as shown in Figure 17.6.

The functions of the decision broker and of the decision agent are implemented by
the hltAgent process, started on all the LDCs of the DAQ system whenever the
DATE resources are configured to run in an environment where the HLT system is
active. This process runs a server loop - similar to those of the recorder and
eventBuilder - waiting for incoming events, sending and receiving HLT
decisions and forwarding the result to the recorder process.

Figure 17.6 Data flow in the LDC in the DAQ system with HLT active.

LDCLDC

DATE
banks

readout

recorder

DDL DIU DDL DIU
D-RORC

Raw data

Raw data
bank

NIC

decision
agent

HLT data
Decisions

DATE
banks

readout

recorder

DDL DIU DDL DIU
D-RORC

Raw data
bank

decision
broker

NIC

Event Building Network

LDCLDC

DATE
banks

readout

recorder

DDL DIU DDL DIU
D-RORC

DDL DIU DDL DIU
D-RORC

Raw data

Raw data
bank

Raw data
bank

NIC

decision
agent

HLT data
Decisions

DATE
banks

readout

recorder

DDL DIU DDL DIU
D-RORC

DDL DIU DDL DIU
D-RORC

Raw data
bank

Raw data
bank

decision
broker

NIC

Event Building NetworkEvent Building Network
ALICE DAQ and ECS manual

Interface to the High-Level Trigger 281
17.2.3 Installation and operation

The hltAgent requires a system with a minimum of one LDC declared as a HLT
LDC and at least one LDC declared as a Detector LDC. It needs the entity
hltReadyFifo (of size equivalent to that of the readoutReadyFifo) and the
entity hltDataPages, big enough to contain the headers of the accepted events
(this entity - when declared via IPC - can be oversized as the real limiting factor will
come from the readoutReadyFifo and the readoutDataPages).

When active, the hltAgent will use the infoLogger package (see Chapter 11) to
create log messages with facility set to hltAgent.

The standard output and standard error streams from the hltAgent are available
in the file
${DATE_SITE_TMP}/${DATE_HOSTNAME}/hltAgent/hltAgent.log. A set
of files are kept available to keep a historical record over a few runs.

The hltAgent must be started using the script
${DATE_HLT_AGENT_BIN}/hltAgent.sh. The script needs no parameters and
must be run within an adequate DATE environment (normally setup by the
rcServer process of the DATE run control).

The hltAgent can be configured in two modes: operation and emulation.

When running in operation mode, the incoming events are considered as HLT
decisions and/or HLT payloads and are treated as such.

When running in emulation mode, the content of the incoming events is ignored,
the hltAgent assumes that all the events received handled by the HLT LDCs must
be considered as a potential HLT decision and it takes decisions based on a static
configuration file. This file, called
${DATE_SITE_CONFIG}/hltEmulation.config, describes the behavior of the
hltAgent via two text lines containing the following information:

1. Relative ratios of HLT decisions taken between all the hltAgents running on
all the HLT LDCs, expressed as a list of integer values with the number of
decisions to be taken by each hltAgent running on the HLT LDCs, e.g.:

10 2 1 1 1

This configures the hltAgent running on the first (as given by the host role ID)
HLT LDC to create 10 decisions every 15 events, the hltAgent running on the
second HLT LDC to create 2 decisions every 15 events and the hltAgents
running on the third, fourth and fifth HLT LDC to create one decision every 15
events. It is possible to give more ratios than the HLT LDCs actually in use (the
extra ones will be ignored); however, every HLT LDC must have a
corresponding entry.

2. For each trigger class, the percentage of events to be fully accepted, of events to
be rejected and - for events to be partially accepted - the percentage of active
Detector LDCs to accept with a +/- range, e.g.:

CENTRAL_TRIGGER 20 30 10 2

This tells the hltAgent, for events marked with CENTRAL_TRIGGER, to
accept 20% of the incoming traffic, to reject 30% of the incoming traffic and to
ALICE DAQ and ECS manual

282 Interfaces
�

accept the remaining 100 - 20 - 30 = 50% of the incoming events using 10% +/-
2% of the active Detector LDCs.

17.2.4 Synchronization between hltAgents

The hltAgents synchronize themselves using non-blocking TCP/IP channels.
When the run starts, each hltAgent running on a HLT LDC connects to the next
hltAgent using the order defined by the host ID. The hltAgent running on the
HLT LDC with highest host ID connects to the hltAgent running on the HLT LDC
with lower host ID. The result is a circular path that connects sequentially all the
HLT LDCs.

Next, all hltAgents running on the HLT LDCs connect to a subset of the Detector
LDCs (the full set of Detector LDCs is split into subsets with about the same size).
The result is a tree of depth 1 with the HLT LDCs as root nodes and the Detector
LDCs as leaves, as shown in Figure 17.7.

At run-time, when an LDC receives an event, this is given to the hltAgent who
finds out if a HLT decision is due or not. If not, the packet is passed as-is to the next
element in the chain (recorder or edmAgent). If instead a HLT decision is due,
the hltAgents running on the HLT LDCs check if the event is a HLT Decision or a
HLT Payload. If the event is a HLT Decision, this is decoded, interpreted and the
result is sent both to the hltAgent running on the next HLT LDC and to all the
connected Detector LDCs. If instead the event is not a HLT decision or if the
hltAgent runs on a Detector LDC, then the hltAgent checks if a HLT decision
for the given event has been already received, in which case the appropriate action
is taken, or if there is no decision yet, and the event is added to a list of “pending”
events. The hltAgents also wait for incoming HLT decisions and - when these are
received - they are either applied (if the event is found in the list of “pending”
events) or put aside for later use. hltAgents running on HLT LDCs also forward
incoming HLT decisions to the next HLT LDC in the chain. All communications
between hltAgents are handled asynchronously and do not block the agent itself.

Figure 17.7 Interconnections between hltAgents.

Detector
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

Detector
LDC

hltAgent

Detector
LDC

hltAgent

HLT
LDC

hltAgent

HLT
LDC

hltAgent
ALICE DAQ and ECS manual

Interface to AliEn and the Grid 283
17.3 Interface to AliEn and the Grid

Files written by DATE must eventually migrate to the Grid. This implies two
separate operations: a copy of the file itself in Permanent Data Storage (PDS) and
the registration of the file and its content in AliEn.

17.3.1 Transfer to PDS

The data files, which are written in ROOT format, are transferred to PDS using one
of the available protocols. For the PDS currently in use at ALICE (CASTOR) the
XROOTD protocol is used (the RFCP protocol, used heavily in the past, is
courrently obsoleted).

In PDS, all the files are stored below a common root. The first level of partitioning
concerns files written during global runs and files written during standalone runs.
For the first class of files, the directory is named “global” while the second type of
files are catalogued using the name of the detector.

The second level of partitioning is meant to control the number of entries per
directory (too many entries would pollute the directory catalogue, creating an
unacceptable overload when querying the server). We achieved this objective by
creating a tree sorted by year, month, day and hour (GMT) of creation of the
individual data files. The information used to create this tree is not meant to be
used for reference (for this we have the AliEn catalogue), it is there just to limit the
number of entries in each directory (we could have used any other method for this
purpose). In Listing 17.1 we can see an example, with excerpts coming from a
snapshot taken in April 2009. Below the root directory in line 3 we can see a
separate directory for each detector plus a directory global for the global runs (line
7). Below the global directory we have two directories for 2008 and 2009 (lines 24
and 25). If we expand the 2009 directory and descent into 04 (month of April) and
02 (2nd of April) we see (lines 28 to 37) one directory per each our of acquisition,
where the data files (lines 40 and 41) are stored. An identical structure is shown for
an example taken from the directory dedicated to ZDC standalone runs (lines 43 to
55) that took place September 18th 2008.
ALICE DAQ and ECS manual

284 Interfaces
�

The filenames have been optimized in agreement with the AliEn file catalogue, for
efficiency and manageability. The syntax of the names is the following:

• two digits for the year

• nine digits for the run number

• three digits for the host ID

• dot

Listing 17.1 Example of directory structure on CASTOR

1: $ rfdir -R /castor/cern.ch/alice/raw
2:
3: /castor/cern.ch/alice/raw:
4: acorde
5: emcal
6: fmd
7: global
8: hmpid
9: muon_trg
10: muon_trk
11: phos
12: pmd
13: sdd
14: spd
15: ssd
16: t0
17: tof
18: tpc
19: trd
20: v0
21: zdc
22: [...]
23: /castor/cern.ch/alice/raw/global:
24: 2008
25: 2009
26: [...]
27: /castor/cern.ch/alice/raw/global/2009/04/02:
28: 01
29: 03
30: 06
31: 07
32: 10
33: 12
34: 13
35: 19
36: 20
37: 23
38: [...]
39: /castor/cern.ch/alice/raw/global/2009/04/02/23:
40: 09000067672031.10.root
41: 09000067672032.10.root
42: [...]
43: /castor/cern.ch/alice/raw/zdc/2008/09/18:
44: 08
45: 09
46: 11
47: 12
48: 14
49: 15
50: 16
51: 22
52: 23
53: [...]
54: /castor/cern.ch/alice/raw/zdc/2008/09/18/23:
55: 08000060012031.10.root
ALICE DAQ and ECS manual

Interface to AliEn and the Grid 285
• file sequential ID (arbitrary number of characters, must be anything unique
within the run: we use the file sequential number, which is unique within each
stream, followed by the stream number)

• the file type: “.root” or “.tag.root”

The result from the above encoding is a filename which is guaranteed to be unique
in the lifetime of ALICE (it merges information coming form the run number, the
host ID, the stream ID and the sequential number within the stream) and, at the
same time, allows searches based on various key parameters (to ease operator’s
intervention on the CASTOR namespace). See Listing 17.1, lines 40, 41 and 55, for
examples of the syntax.

During the ROOTification procedure, a file of file type “.root.guid” containing
the GUID information (sort of unique identifier for the data stored in the events) is
created by AliRoot for each ROOT file. The content of the GUID file is used during
the registration procedure with AliEn and then the file itself is removed.

Another file created by the ROOTification procedure is the TAG file (filetype
“.tag.root”). A TAG file is created for each run. This file is copied to CASTOR
using the same syntax as for the associated ROOT file. It is also registered in AliEn
(without GUID as this information does not apply to TAG files).

Once a file it has been moved, it must get registered in the AliEn files catalogue. For
this procedure we need the following information:

• file size (in bytes)

• full filename in CASTOR

• file creation time

• LHC period associated to the run of the file

• MD5 checksum of the file (calculated either during the transfer of the file or
manually after the transfer)

• GUID information of the file (ROOT files only)

All the above information is stored in a stamp file that cal be handled in two
different ways: via the AliEn registration gateway or via the alienspoold
daemon. The two mechanisms can be used indivividually or together. The
recommended one is the AliEn registration gateway.

The AliEn registration gateway is a machine that can be reached from the
DAQ TDSM daemons via the SCP protocol and that has access to the network
where the AliEn files catalogue is connected (usually GPN). At the end of the
transfer of a file, the TDSM Mover copies the associated stamp file into a dedicated
directory local to the AliEn registration gateway, where a dedicated software
daemon, developed and maintained by the ALICE Offline project, handles it. It is
possible to define multiple AliEn gateways: the TDSM Mover hot-switches to the
first available node (an error message will be raised periodically to inform the
operator of the abnormal status of the “broken” AliEn gateway(s)). Whenever no
gateway is available, the stamp file is stored in a dedicated TDS area and its
registration will be retried by a dedicated AliEn interface process via the same
protocol used by the TDSM Movers. The DAQ/ECS operator handles all events up
to the copy of the file into the gateway (including installation and backup of the
gateway(s)) while the Offline operator must take care of all events related to the
ALICE DAQ and ECS manual

286 Interfaces
�

handling of the information stored within the stamp file and its registration in the
AliEn catalogue.

The alienspoold daemon works via dedicated directory on TDS. This directory
is periodically polled by a dedicated process named alienspoold. The daemon,
developed and maintained by the ALICE Offline project, discovers the stamp file,
takes care of the registration procedure using the information stored therein and
removes the stamp file when done. For obvious reasons, the alienspoold process
must run on a machine that has access to both the TDS network (where the stamp
file is created) and to whatever network is used to host the AliEn files catalogue
(usually GPN). Files with incomplete or invalid syntax are rejected by
alienspoold and stored in a special “.garbage” sub-directory, where they can be
retrieved for post-mortem analysis. The health status of the alienspoold process
is continuously verified by the TDSM package, that takes care of saving the logs
and of restarting the daemon if necessary, up to the notification to the DAQ/ECS
operator whenever needed. It is the responsibility of the ECS/DAQ operator to
handle events such as rejected registrations or failures in the protocol from/to the
AliEn catalogue server. Periodic warnings may be issued by the TDSM package
whenever stamp files keep piling up, pointing to a failure somewhere in the
registration chain.

17.4 File Exchange Server

The File Exchange Server (sometime named FES or FXS) is a transient storage to
exchange information between DAQ and other systems (e.g. Offline, DCS, HLT).
Some DAQ processes may copy files to the server, which stores them until they are
picked up (e.g. by an external system). Each file is supposed to be read once only
after it has been stored, by a single consumer, and will then be removed. The File
Exchange Server is not meant to publish a file to be used by multiple remote
consumers. The paradygm used is: store from DAQ, read by a single remote
consumer, and then delete.

The File Exchange Server consists of a server hosting the files and related meta
information stored in a MySQL database, and a client API to access the files from
the DAQ.

We describe in this chapter the DAQ File Exchange Server, i.e. a mechanism to
export files from DAQ to other systems. DCS and HLT have implemented their
own File Exchange Server based on this architecture to export their files.

The server part relies on:

• a local directory, which must be accessible remotely by password-less scp or
sftp for a given user, from the DAQ nodes where File Exchange Server access
is needed. To enforce maximum security in production areas, and make sure the
server is not used for other purpose than copying files, this remote user login is
usually setup with the restricted shell implemented by the rssh package. It is
however not mandatory, and the DAQ user needed to store the files can be
defined as a normal interactive user. The DAQ user should have write access to
the storage area. The external systems reading the files are given only read
access to the files.
ALICE DAQ and ECS manual

File Exchange Server 287
• a database to store the metada associated to the hosted files. This is used as a
directory entry to know what files are available, and to flag the files once they
have been used remotely. The information is stored in a single table, described
in Table 17.1. The DAQ user should have write access to the table, whereas
external systems need only read access, and update on the time_processed
column to flag the files which they have retrieved.

The DAQ File Exchange Server is primarily used to export results from the Detector
Algorithms (see Chapter 22) to the Offline Shuttle.

Each file stored in the File Exchange Server has a unique name as defined by the
field filePath which is derived from other identifiers to make it unique.

Access to the File Exchange Server from a DAQ process requires that the following
two environment variables are defined (in the environment section of the DATE
configuration database, with editDb, seeChapter 4.4):

• DATE_FES_DB: access parameters to the File Exchange Server database. This
variable should be defined with the syntax
user:password@hostname:dbname where user / password are the
credentials to access the File Exchange Server database named dbname running
on hostname.

• DATE_FES_PATH: access parameters to the File Exchange Server file repository.

Table 17.1 File Exchange Server daqFES_files table

Field Description

run The run number during which the file was created.

detector The code of the detector creating the file.

fileId The local file Id, which should be unique for a given process (DAQsource)
in a given run. However, similar processes running in parallel on different
DATE roles may use the same fileId. For example, the different instances
of the same pedestal DA running on each LDC of a given detector may all
export a file with the same fileId like pedestal.root.

DAQsource The DATE role where the file was created, as defined by the
DATE_ROLE_NAME environment variable set at runtime by the
runControl launching the process.

filePath The unique identifier of the file. It is built from a combination of run,
detector, fileId and DAQsource to ensure unicity.

time_created The time at which the file was stored in the File Exchange Server.

time_processed The time at which the file is flagged to be deleted. When an external pro-
cess reads a file from the File Exchange Server, it should update this field
to notify the File Exchange Server that the file has been retrieved and can
be removed.

time_deleted The time at which the file has eventually been removed from the File
Exchange Server, after it has been retrieved and flagged as such by a
non-NULL time_processed field.

size The file size.

fileChecksum The MD5 checksum of the file.
ALICE DAQ and ECS manual

288 Interfaces
�

This variable should be defined with the syntax user@host:path so that a
command like scp myfile user@hostname:path would copy myfile to
the File Exchange Server repository directory on hostname.

The database may be created using the
${DATE_INFOLOGGER_DIR}/daqFES_create.sql SQL command script.

The File Exchange Server may be cleaned by running periodically (with
appropriate rights) a script as the example provided
${DATE_INFOLOGGER_DIR}/daqFES_clean which should be adapted
according to the needs (e.g. not destroying the files right away, but maybe moving
them to an archive of the last ones as disk space allows). The database table may
also be used for consistency checks (file size and MD5 sum), or to identify orphan
entries (e.g. a file on disk with no database entry, or a database entry with no
corresponding file on disk). Upon deletion of a File Exchange Server file, the files
on disk are removed, but thecorresponding entries in the database should be left for
logging and statistics purposes.

The following command line tools are available in ${DATE_INFOLOGGER_DIR}
to access the File Exchange Server from a DAQ node:

• daqFES_ls : list the files available in the File Exchange Server. The
environment variables DATE_RUN_NUMBER and DATE_DETECTOR_CODE may
be defined (and then used as filters).

• daqFES_store mylocalfile myId: store a local file named mylocalfile
on the File Exchange Server using identification myId. The environment
variables DATE_RUN_NUMBER, DATE_ROLE_NAME and DATE_DETECTOR_CODE
should be defined.

• daqFES_get filePath: get the file named filePath from the File Exchange
Server (or all of them if filePath not provided) and mark them as used so that
they may afterwards be deleted. The environment variables
DATE_RUN_NUMBER and DATE_DETECTOR_CODE may be defined (and then
used as filters).

17.5 Interface to the Shuttle

The Shuttle is an Offline process that collects some information from DAQ after a
run is finished in order to populate the Offline Condition DataBase (OCDB). This is
meant in particular to retrieve the calibration results produced by the Detector
Algorithms (see Chapter 22).

The Shuttle is triggered either internaly by a timeout (periodical checks for new
runs), or by the DAQ service providing end of run notification by DIM. This service
(among others) is implemented in the logbookDaemon and named, as defined in
DAQlogbook.h, /LOGBOOK/SUBSCRIBE/ECS_EOR. The service is updated with a
run number each time a run is completed (ECS completion).

A dedicated logbook table named logbook_shuttle (defined in
logbook_create.sql) is populated by the ECS to tell the Shuttle which
detectors are active in a run, and to keep the status of Shuttle processing for each of
ALICE DAQ and ECS manual

Interface to the Shuttle 289
them. The Shuttle gets the list of new runs from this table, and updates it
accordingly when it processes them.

A special flag test_mode may be set manually when needed to identify some runs
where it is not wished that the results are taken into account by the Shuttle to
populate OCDB. This may be the case to test new Detector Algorithms.

The Shuttle accesses the logbook database and the DAQ File Exchange Server by
direct SQL queries; there is no API for this purpose.
ALICE DAQ and ECS manual

290 Interfaces
�

ALICE DAQ and ECS manual

�

Part II

ALICE Experiment
Control System
Reference Manual
December 2010

ALICE ECS Project
ECS & ACT

�

Preface 293
Preface

The ALICE Experiment Control System (ECS) coordinates the activities performed on the
particle detectors when running the experiment. These activities concern the operation and
control of the detectors from the hardware point of view, the acquisition of experimental or
calibration data, the Trigger system, and the High Level Trigger. They are called ‘online
systems’.

The ECS has been designed and implemented as a layer of software on top of the existing
'online systems' controlling the different activities. The ECS imposes only one constraint to
these systems: they must provide status information and eventually accept commands
through interfaces based on Finite State Machines (FSMs).

The FSM package used in ALICE is SMI++ [4]. The ECS heavily relies on it and on the
DIM [3] communication package both for the implementation of the interfaces between
ECS and 'online systems' and for the implementation of the ECS major components.

This part of the manual describes the ECS.

• The integration between the ECS and the different 'online systems' is not equally
developed.

• Some of the detectors did not implement yet a DCS based on FSM: therefore the DCS
states of these detectors are not included yet in the ECS.

• Some of the detectors have not yet developed their calibration procedures.

• Some information on the configuration of the ‘online systems’, such as the definition of
the Trigger classes, is not available yet and therefore the ECS uses now some temporary
definitions.

The ECS will evolve to include the above issues as soon as they will be available. Its
architecture has been tested during beam tests, and proved to be solid and flexible enough to
include all the future extensions.
ALICE DAQ and ECS manual

294 Preface

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
18
ECS Overview

This chapter describes the architecture of the Experiment Control
System (ECS), its various components and their interactions.

18.1 Introduction. 296

18.2 Partitions . 296

18.3 Stand-alone detectors . 297

18.4 ECS architecture . 298

18.5 Detector Control Agent (DCA) 298

18.6 The DCA Human Interface 299

18.7 Partition Control Agent (PCA) 299

18.8 The PCA Human Interface 300

18.9 ECS/DCS Interface . 300

18.10 ECS/DAQ Interface . 301

18.11 ECS/TRG Interface . 301

18.12 ECS/HLT Interface. 302

18.13 logFiles . 303

18.14 Database. 303

18.15 Interactions with other systems 303

18.16 Auxiliary processes . 304

296 ECS Overview
�

18.1 Introduction

The ALICE experiment consists of several particle detectors. Running the
experiment implies performing a set of activities with these detectors. In ALICE
these activities are grouped into four activity domains: Detector Control System
(DCS), Data Acquisition (DAQ), Trigger (TRG) and High Level Trigger (HLT).

Every activity domain requires some form of coordination and control:
independent control systems have been developed for all of them. These systems,
called ‘online systems’, are independent, may interact with all the particle
detectors, and allow partitioning. Partitioning is the capability to concurrently
operate groups of ALICE detectors called partitions.

Before being operated together to collect physics data in the ALICE final setup,
detectors were prototyped, debugged, and tested as independent objects. While
this operation mode, called ‘stand-alone mode’, was absolutely vital in the
commissioning and testing phase, it is also required during the operational phase
to perform calibration procedures on individual detectors. Therefore it remains
essential during the whole life cycle of ALICE.

The Experiment Control System (ECS) coordinates the operations of the ‘online
systems’ for all the detectors and within every partition. It permits independent,
concurrent activities on part of the experimental setup by a same or different
operators.

The components of the ECS receive status information from the ‘online systems’
and send commands to them through interfaces based on Finite State Machines.
The interfaces between the ECS and the ‘online systems’ contain access control
mechanisms that manage the rights granted to the ECS: the ‘online systems’ can
either be under the control of the ECS or be operated as independent systems. In
the second case the ‘online systems’ provide status information to the ECS, but do
not receive commands from it.

18.2 Partitions

A partition is a group of particle detectors. From the ECS point of view, a partition
is defined by a unique name that makes it different from other partitions and by
two lists of detectors: the list of detectors assigned to the partition and the list of
detectors excluded from the partition.

The first list, called assigned detectors list, contains the names of the ALICE
detectors that can be active within the partition. This static list represents an upper
limit for the partition: only the detectors listed in the assigned detectors list can be
active in the partition, but they are not necessarily active all the time. The assigned
detectors lists for different partitions may overlap: a same detector can appear in
different assigned detectors lists. Assigned detectors lists cannot be empty.

The second list, called excluded detectors list, contains the names of the ALICE
detectors that have been assigned to the partition, but are currently not active in the
ALICE DAQ and ECS manual

Stand-alone detectors 297
partition. This dynamic list is a subset of the assigned detectors list. It can be
empty.

Although a given detector appears in the assigned detectors list of many
partitions, it cannot be active in several partitions at the same time, but only in one
or none of them: the excluded detectors list of a partition contains the names of the
detectors that are not active in the partition because they are active in another one,
or because they are operated in stand-alone mode, or because of an explicit
operator request. Explicit operator requests are subject to restrictions: the structure
of a partition cannot be changed by the exclusion and inclusion of detectors during
the data-taking phase.

Two types of operations can be performed in a partition: operations involving all
the active detectors and operations involving only one active detector. The
operations of the first type are called global operations; those of the second type are
called individual detectors operations.

The ECS handles the global operations watching the DCS status of all the active
detectors and interacting with the runControl process that steers the data
acquisition for the whole partition, with the Trigger Partition Agent (TPA)
that links the partition to the Central Trigger Processor (CTP), and with the HLT
proxy that controls the HLT operations for the partition. When a global operation
starts, it inhibits all the individual detectors operations.

The ECS handles an individual detector operation watching the DCS status of the
detector and interacting with the runControl process that steers the data
acquisition for that particular detector,with the Local Trigger Units (LTU)
associated to it, and with the HLT proxy that controls the HLT operations for that
detector.. When an individual detector operation starts, it inhibits the global
operations, but it does not inhibit individual detector operations executed on other
detectors: these individual detector operations, such as calibration procedures, can
be concurrently performed within the partition.

18.3 Stand-alone detectors

A stand-alone detector is a detector operated alone and out of any partition. The
operations performed with a stand-alone detector are equal to the individual
detector operations that can be done on the detector when this one is active in a
partition: the ECS handles these operations watching the DCS status of the detector
and interacting with the runControl process that steers the data acquisition for
that detector, with the LTU associated to it, and with the HLT proxy that controls
the HLT operations for the detector.

The major difference between a stand-alone detector and a partition with only one
single detector is that the partition with only one detector is linked to the CTP by a
TPA, whereas the stand-alone detector only interacts with its LTU.
ALICE DAQ and ECS manual

298 ECS Overview
�

18.4 ECS architecture

Every detector operated in stand-alone mode or assigned to a partition is controlled
by a process called Detector Control Agent (DCA) and every partition is
controlled by a process called Partition Control Agent (PCA).

When a detector is operated in stand-alone mode, its DCA accepts commands from
an operator that issues commands from a DCA Human Interface. Several DCA
Human Interfaces can coexist for the same DCA, but only one can send active
commands at a given time: the others can only get information.

When a detector is active in a partition, its DCA accepts commands only from the
PCA controlling the partition. Operators can still open DCA Human Interfaces,
but only to get information and not to send active commands.

A PCA Human Interface provides to an operator the full control of a partition.
Many PCA Human Interfaces can coexist for the same PCA, but only one has the
control of the partition at a given time and can be used so send active commands.

DCAs and PCAs get status information from the 'online systems' and eventually
send commands to components of these systems through interfaces based on Finite
State Machines.

This chapter describes the components of the ECS and the interface between the
ECS and the 'online systems'.

18.5 Detector Control Agent (DCA)

There is a DCA for every detector operated in stand-alone mode or assigned to a
partition. The main tasks performed by this process are the following:

• It handles stand-alone data-acquisition runs for the detector working alone.
This function requires the coordination and the synchronization of the
detector's hardware controlled by the DCS, of the detector's Front End
Read-Out (FERO), of a runControl process steering the data acquisition for
the given detector only, of the HLT activities performed for the detector, and of
the LTU associated to this detector. This function is implemented for all the
detectors but not in the same way because detectors have specific requirements.

• It handles detector specific procedures, such as calibration procedures. These
procedures are by definition detector dependent and therefore their
implementation is different for each detector.

The DCA is implemented as an SMI domain [4]. The name of the domain is given by
the detector name suffixed with '_DCA'. For example, the DCA controlling the
HMPID detector is implemented as an SMI domain whose name is HMPID_DCA.

In addition to the objects required to perform the main tasks described above, the
SMI domain contains other objects that allow the following features:

• When the detector is active in a partition and as long as a global action is being
ALICE DAQ and ECS manual

The DCA Human Interface 299
executed in the partition, the PCA controlling the partition keeps the DCA
informed about the global action going on: the DCA goes in an INHIBITED
status and waits for the global action to terminate. The information flow goes
from the PCA to the DCA.

• When the detector is active in a partition and as long as an individual detector
operation is being executed for the detector, the DCA keeps the PCA controlling
the partition informed about the action going on: the PCA goes in an
INHIBITED status and waits for the action to terminate. The information flow
goes from the DCA to the PCA.

The DCA accepts commands from one master operator at a time: either a PCA or a
DCA Human Interface.

18.6 The DCA Human Interface

An operator can control the detector in stand-alone mode with a DCA Human
Interface having got the mastership of a DCA. He/she can send commands to the
DCA, can change the rights granted to the DCA, and can send commands directly to
objects in the HLT, DAQ, and TRG 'online systems'. Without the mastership of the
DCA, the DCA Human Interface can only get information, but it cannot issue
active commands.

A detailed description of the DCA Human Interface can be found in the ALICE
DAQ WIKI.

18.7 Partition Control Agent (PCA)

There is a PCA per partition. The main tasks performed by this process are the
following:

• It handles PHYSICS and TECHNICAL runs using all the detectors active in the
partition. This function requires the coordination of the status, from the
hardware and FERO point of view, of all the active detectors, of a runControl
process steering the data acquisition for the whole partition, of the TPA
associated to the partition and of the HLT proxy controlling the HLT activities
for the partition. This function is implemented in a same way for all the
partitions.

• It delegates individual detectors operations to the DCAs controlling the
detectors active in the partition.

• It handles the partition structure allowing the inclusion/exclusion of detectors
in/from the partition, whenever these operations are compatible with the
data-taking going on for individual detectors or for the whole partition.

The PCA is implemented as an SMI domain [4]. The name of the domain is given by
the partition name suffixed with '_PCA'. For example, the PCA controlling the ITS
partition is implemented as an SMI domain whose name is ITS_PCA.
ALICE DAQ and ECS manual

300 ECS Overview
�

In addition to the objects required to perform the main tasks described above, the
SMI domain contains other objects that allow the following features:

• When a detector is active in a partition and as long as a global action is being
executed in the partition, the PCA keeps the DCA controlling the detector
informed about the global action going on: the DCA goes in an INHIBITED
status and waits for the global action to terminate. The information flow goes
from the PCA to the DCA.

• When a detector is active in a partition and as long as an individual detectors
operation is being executed for the detector, the DCA controlling the detector
keeps the PCA informed about the action going on: the PCA goes in an
INHIBITED status and waits for the action to terminate. The information flow
goes from the DCA to the PCA.

The PCA accepts commands from one PCA Human Interface at a time.

18.8 The PCA Human Interface

An operator can control a partition with a PCA Human Interface having got the
mastership of a PCA. He/she can send commands to start global and individual
detectors operations, can change the rights granted to the PCA, can change the
structure of the partition excluding or including detectors, and can send commands
directly to objects in the HLT, DAQ, and TRG 'online systems'. Without the
mastership of the PCA, the PCA Human Interface can only get information, but
it cannot issue active commands.

A detailed description of the PCA Human Interface can be found in the ALICE
DAQ WIKI.

18.9 ECS/DCS Interface

The DCS describes the ALICE experiment as a hierarchy of particle detectors and of
infrastructure services. Its model of ALICE is based on Finite State Machines and is
implemented as a tree structured set of SMI domains and objects. Within this tree
every detector is represented by a different sub-tree of SMI objects. The status of the
objects being the roots of these sub-trees are the status of the different detectors
seen from the DCS point of view.

The interface between the ECS and the DCS mainly consists of one object per
detector: the roots of the sub-trees described above and representing the detectors
within the DCS. These objects provide status information to the central DCS and, at
the same time, to the ECS. A second object, called Run Control Unit, informs the
ECS about the availability of the detector for running (i.e. even a READY detector
may want to be excluded from runs).
ALICE DAQ and ECS manual

ECS/DAQ Interface 301
Figure 18.1 is an example where two detectors, named 'y' and 'z' are active in an
ECS partition named 'A'. The figure shows the double role of the SMI objects that
provide status information for the two detectors both to the DCS and to the ECS.

18.10 ECS/DAQ Interface

The interface between the ECS and the DAQ is made of SMI objects representing
runControl processes:

• A runControl process per detector: every runControl process steers the
data acquisition for a given detector and for that detector only. The name
assigned to the process is equal to the detector name.

• A runControl process per partition: it steers the data acquisition for the whole
partition with data produced by all the active detectors. The name assigned to
the process is equal to the partition name prefixed with 'ALL'. If, for example,
the partition name is ALICE, then the name of the runControl process is
ALLALICE.

18.11 ECS/TRG Interface

An SMI domain named 'TRIGGER' contains the objects describing the basic Trigger
components: the LTUs associated to the detectors and the CTP. These SMI objects
are associated to processes, called proxies, that actually drive the LTUs and the CTP.

Figure 18.1 ECS/DCS interface.
ALICE DAQ and ECS manual

302 ECS Overview
�

All the detectors active in a partition produce raw data when a global operation is
performed; the generation of raw data by the detectors is done under the control of
their associated LTUs. These LTUs are synchronized by the CTP.

There is one CTP, but many partitions can be operated at the same time and all of
them need access to the CTP. The Trigger Partition Agents (TPAs)
associated to the different partitions solve the access conflicts. There is one TPA per
partition. The TPAs are implemented as SMI objects in SMI domains. The name of
these domains is made by the partition names suffixed by '_TRG'. The TPA for a
partition named ALICE is an SMI object named TPA in an SMI domain named
ALICE_TRG. The TPA interacts with CTP and LTUs.

When a detector is operated in stand-alone mode, the DCA controlling it directly
interacts with the LTU associated to the detector. The CTP is ignored.

When a detector is active in a partition and an individual detectors operation is
executed on it, the PCA delegates the operation to the DCA controlling the detector.
The DCA again interacts with the LTU associated to the detector. The CTP is
ignored.

When a global operation is performed in a partition, the PCA controlling the
partition interacts with the TPA that in turn interacts with CTP and LTUs. The PCA
has no direct interaction with CTP and LTUs.

Figure 18.2 shows the ECS/TRG interface.

18.12 ECS/HLT Interface

The interface between the ECS and the HLT is made of SMI objects representing
HLT proxy processes:

• An HLT proxy process per detector: every HLT proxy process steers the

Figure 18.2 ECS/TRG interface.
ALICE DAQ and ECS manual

logFiles 303
HLT activities for a given detector and for that detector only.

• An HLT proxy process per partition: it steers the HLT activities for the whole
partition with data produced by all the active detectors.

18.13 logFiles

The ECS components use the DATE infoLogger package to record error and
information messages.

The stdout files created by DCAs and PCAs are stored in a directory pointed to by
the environment variable ECS_LOGS. The name of the files are self explanatory.

When working with dummy versions of HLT, DCS and Trigger (for debugging
purposes) the stdout files created by the dummy processes are stored in the
directories pointed to by the environment variables HLT_LOGS, DCS_LOGS , and
TRG_LOGS.

18.14 Database

The ECS components require configuration data. This information is stored in a
MySQL database (see the ALICE DAQ WIKI). The database also contains
additional runtime information available through a Web interface (see the ALICE
DAQ WIKI). In particular, this interface shows the activities being performed for
each detector and for each partition.

18.15 Interactions with other systems

In addition to its main activity (i.e. the synchronization of the ‘online systems’ to
perform runs), the ECS interacts with other components of the ALICE software. In
particular:

• Sends SOR and EOR commands to the central ALICE DCS at the beginning and
at the end of every standalone or global run.

• Sends SOR and EOR commands to the LHC_MON process at the beginnig and
at the end of every global run.

• Sends to the Alice Configguration Tool (ACT) requests to lock/unlock
configuration items to prevent configuration changes during runs.

• Stores in the ALICE eLogbook information about all the performed runs.
ALICE DAQ and ECS manual

304 ECS Overview
�

18.16 Auxiliary processes

All the DCAs and all the PCAs require the presence of some auxiliary processes:

• ecs_timeout used to interrupt SMI commands after reasonable delays.

• ecs_counter to count the number of iterations performed during some
calibration procedures or the number of elements in some sets.

• stringsProxy required to compare SMI parameters.

• ecs_logger to store infoLogger messages.

• ecs_operator required to start some special operator commands, such as
starting the migration of data.

• ecs_daq_db_handler handling all the interactions with the DAQ and ECS
databases.

The PCAs require more auxiliary processes:

• pca_updateDB to keep track of the detectors excluded/included from/in
partitions.

• pca_updateTIN to update the list of detectors used as trigger detectors for a
partition.
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
19
ALICE
Configuration
Tool

The ALICE Configuration Tool (ACT) is the first step to achieve a high level of
automation, implementing automatic configuration of the different detectors and
online systems. Having already contributed to the reduction of the size of the shift
crew needed to operate the experiment, the ACT is a central actor in ALICE’s
activities, allowing the Run Coordination and the Shift Leaders to operate the
experiment in a global way. This chapter describes the architecture of the ACT and
its different components, the interfaces with the different online systems and the
Web-based Graphical User Interface.

19.1 Architecture. 306

19.2 Database. 311

19.3 Application Programming Interface 314

19.4 Tools . 325

19.5 Graphical User Interface. 327

306 ALICE Configuration Tool
�

19.1 Architecture

19.1.1 Overview

The operation of the ALICE experiment over several years to collect billions of
events acquired in well defined conditions requires repeatability of the
experiment’s configuration. Appropriate software tools are therefore needed to
automate daily operations, minimizing human errors and maximizing the
data-taking time. The ALICE Configuration Tool (ACT) fulfills these requirements,
allowing the automatic configuration of the different systems and detectors.

The base concept of the ACT is to serve as a configuration repository to which the
different ALICE systems can access to extract their currently selected configuration.
As shown in Figure 19.1, the ACT is operated both by the Run Coordination and
the different system experts via a Web-based Graphical User Interface (GUI). A
relational database (DB) serves as a data repository and an Application
Programming Interface (API), implemented in C, provides numerous
functionalities to the different components.

A publish/subscribe mechanism, based on the Distributed Information
Management (DIM) system, is also available. Two dedicated modules, running as
daemon processes, use this mechanism:

• ECS Dedicated Daemon (EDD): interacts with the Experiment Control System
(ECS), pushing the selected configurations for the online systems.

• DCS Dedicated Daemon (DDD): interacts with the Run Control Tool
(RCT), pushing the selected configurations for the different ALICE detectors. The
RCT then makes the configurations available to each individual Detector
Control System (DCS) where the detector configuration is executed.

Figure 19.1 The architecture of the ACT and its interfaces with the different online systems and detectors.
ALICE DAQ and ECS manual

Architecture 307
19.1.2 Taxonomy

In order to define the different systems and detectors components to configure, the
ACT introduces the following concepts:

• System: an ACT system represents a physical or logical element of the ALICE
experiment. Each system normally has several configurable components.
Examples of V\VWHPV are: detectors, online systems, ECS partitions.

• Item: an ACT item corresponds to a configurable component of a specific ACT
system. Each item normally has several possible configurations defined.
Examples of an item are: ‘partition PHYSICS_1 HLT Mode’, ‘TPC DCS
configuration’, ‘CTP L0 inputs’.

• Instance: an ACT instance defines a possible predefined configuration for
a specific ACT item. At any given time, only one instance can be activated
for each item.

19.1.2.1 Items Locking

A locking mechanism prevents the configuration of items that are either being
configured or used by an online system (e.g. a detector being part of a running
partition).

For configuration, the items are locked by the corresponding daemon (EDD or
DDD). If being used by an online system, the items are locked by that system.

19.1.2.2 Items Status Mismatch

The status mismatch flag allows to identify items whose configuration has
changed outside the control of the ACT. It is the external tool’s responsibility to flag
the changed item.

An example of this behavior is the inclusion/exclusion of detectors from an ECS
partition using the ECS’s human interfaces.

19.1.2.3 Items Activation Status

At a given time, each item is in a specific state, represented by its activation status.
There are four possible values:

Figure 19.2 ACT hierarchy.
ALICE DAQ and ECS manual

308 ALICE Configuration Tool
�

• ‘update requested’: a configuration has been requested for the item.

• ‘applying’: a configuration is being executed for the item.

• ‘active’: the item is configured as requested.

• ‘update failed’: an error occurred while configuring the item.

Figure 19.3 shows the state diagram for the items activation status.

19.1.3 ACT Update Request Server

The ACT Update Request Server is a DIM server implementing the ACT_UPDATE
DIM service and several DIM commands. The most important are:

• ACT_UPDATE_REQUEST: an update has been requested.

• ACT_TIMEOUT_REQUEST: an abort has been requested.

When a command is received, it updates the ACT_UPDATE service.

19.1.4 Interfaces

Below is a list of the different ACT interfaces.

19.1.4.1 ACT-ECS interface

The interface between ACT and ECS is implemented by the EDD daemon process.
When an update request is received by EDD (via the ACT_UPDATE DIM service), it
checks which ECS items have been marked for update and propagates the
corresponding configuration to ECS.

19.1.4.2 ACT-DAQ interface

Communication between ACT and DAQ is implemented by the EDD daemon
process. When an update request is received by EDD (via the ACT_UPDATE DIM
service), it checks which DAQ items have been marked for update. Then,
depending on the item, two different paths may be followed:

Figure 19.3 Items activation status state diagram.
ALICE DAQ and ECS manual

Architecture 309
• for parameters which are also controlled by the ECS (e.g recording mode), the
configuration is propagated to the ECS.

• for parameters which are only controlled by the DAQ (e.g. number of GDCs),
the configuration is propagated to the DAQ.

At Start of Run, several DAQ modules (e.g. TPCC) also download their selected
configuration directly from the DB using the C API.

19.1.4.3 ACT-HLT interface

Communication between ACT and HLT is performed via the ECS, which then
sends the relevant changes to the HLT system.

19.1.4.4 ACT-CTP interface

Communication between ACT and CTP is performed in two different ways.

For the CTP partition configuration, at Start of Run the selected configuration is
downloaded directly from the DB by the CTP system using the C API.

For the CTP global configuration, when an update request is received by EDD (via
the ACT_UPDATE DIM service), it is transmitted to CTP, which downloads the
selected configuration directly from the DB using the C API. The CTP is then
restarted to load the new configuration.

19.1.4.5 ACT-Detector interface

The interface between ACT and the ALICE detectors is implemented by two
modules: the DDD daemon process and the RCT. When an update request is received
by DDD (via the ACT_UPDATE DIM service), it checks which items have been
marked for update and propagates the corresponding information (via DIM) to the
RCT.

The RCT then updates its internal PVSS datapoints for the corresponding detectors
and sends them an FSM CONFIGURE command. When the detector finishes its
configuration, it updates a dedicated datapoint with an acknowledgment message,
which is then propagated back to DDD (via DIM). Based on this message, DDD then
changes the updated items activation status to either ‘active’ or ‘update
failed’.

More technical details concerning RCT can be found in [20].

19.1.5 Workflow

As seen in Figure 19.4, the ACT workflow starts with the user (usually the Shift
Leader) selecting the desired configuration via the GUI. When finished, the user
will submit an update request, which will change the selected items activation
status to ‘update requested’ and trigger the execution of the
ACT_UPDATE_REQUEST DIM command by the ACT Update Request Server.
This command will result in an update of the ACT_UPDATE DIM service, thus
signaling to both EDD and DDD that an update was requested.
ALICE DAQ and ECS manual

310 ALICE Configuration Tool
�

Items related with ECS, DAQ, HLT and CTP (item categories equal to
‘partition’, ‘DAQ config’,‘HLT config’, and ‘CTP config’, respectively) are
handled by EDD. Upon receiving the update request, EDD first locks the items and sets
their activation status to ‘applying’. Then, depending on the item, changes will be
performed in the corresponding online systems to reflect the new configuration. Finally,
the items are set to either ‘active’ (on success) or ‘update failed’ (on failure) and
unlocked.

Items related with the DCS (item categories equal to ‘DCS config’) are handled
by DDD. Upon receiving the update request, DDD first locks the items and sets their
activation status to ‘applying’. Then the items are grouped by detector, and their
name and the value of their active instance concatenated in a string which is passed
via DIM to RCT (by updating the ACT_RCT_CONF_DET DIM service where DET is
replaced by the corresponding 3-letter detector code). RCT then decodes the received
string and populates its internal PVSS datapoints, after which it sends a CONFIGURE
command to the detector’s FSM. After executing this command, the detector’s FSM
updates a datapoint with the reply to the configuration, which is sent back to DDD
via DIM. Finally, the items are set to either ‘active’ (on success) or ‘update
failed’ (on failure) and unlocked by DDD.

Figure 19.4 ACT workflow diagram.
ALICE DAQ and ECS manual

Database 311
19.2 Database

19.2.1 Overview

The DB, running on a MySQL Server, is used to store the definition of the different
elements of the ACT. InnoDB is used as a storage engine for its support of both
transactions and foreign keys constraints.

Daily backups are performed to a RAID 6 disk array and the CERN Advanced
STORage manager (CASTOR).

19.2.2 Table description

Below is a description of the ACT’s tables.

19.2.2.1 ACTsystems table

This table defines ALICE configurable systems, such as the online systems, the ECS
partitions or the different detectors.

Figure 19.5 ACT database schema.

Table 19.1 ACTsystems table

Field Description

system System name

description System description

ECScomponent Name of the corresponding ECS detector or partition (if
applicable)

systemCategory System type, if any (‘partition’, ‘detector’)
ALICE DAQ and ECS manual

312 ALICE Configuration Tool
�

19.2.2.2 ACTitems table

This table defines, for each system, the list of configuration items.

19.2.2.3 ACTinstances table

This table defines, for each item, the list of possible (predefined) configurations.

enabled Flag indicating if system is enabled in ACT

isTriggerDetector Flag indicating if system is a trigger detector

isReadoutDetector Flag indicating if system is a readout detector

updateTimeout Update request timeout in seconds

Table 19.1 ACTsystems table

Field Description

Table 19.2 ACTitems table

Field Description

item Item name

system Item’s system

description Item description

itemCategory Item category, if any (‘CTP config’, ‘TRG config’, ‘DCS
config’, ‘HLT config’, ‘DAQ config’, ‘partition’)

enabled Flag indicating if item is enabled in ACT

activationStatus Item’s activation status report (‘update requested’,
‘applying’, ‘’, ‘update failed’)

statusTimestamp Timestamp of the latest activation status update

statusMismatch Flag indicating if item is not in the requested configuration
(only meaningful when the item’s activation status is equal
to ‘active’)

activationComment Comments of latest activation status update

Table 19.3 ACTinstances table

Field Description

instance Instance name

item Instance’s item

version Instance version number

description Instance description

author Instance author name

creationTime Instance creation timestamp
ALICE DAQ and ECS manual

Database 313
19.2.2.4 ACTlockedItems table

This table stores the list of locked configuration items.

19.2.2.5 ACTconfigurations table

This table defines reusable configurations of one or more configuration items,
allowing users to configure several items in one action.

isValidated Flag indicating if instance is validated (marked as ready
to be used)

changeLog Instance change log

value Instance value

isActive Flag indicating if instance is selected (active) for the cor-
responding item

dependOnDetector ECS name of detector this instance may depend on at
runtime

Table 19.3 ACTinstances table

Field Description

Table 19.4 ACTlockedItems table

Field Description

item Item name

lockSource Name of element which is locking the item

runNumber Run number which is locking the item (if applicable, zero
otherwise)

eventCount Number of subevents collected by readout

bytesInjected Size of data collected by readout in bytes

time_update Database row update date/time

Table 19.5 ACTconfigurations table

Field Description

id Configuration ID

name Configuration name

target Target to which the configuration can be applied (e.g. parti-
tion name)

wildcards CSV list of wildcards to be applied

obsolete Flag indicating if configuration is obsolete

author Configuration author name

creationTime Configuration creation timestamp
ALICE DAQ and ECS manual

314 ALICE Configuration Tool
�

19.2.2.6 ACTconfigurationsContent table

This table stores the content of the reusable configurations defined in the
ACTconfigurations table.

19.2.2.7 ACTinfo table

This table stores internal ACT information (e.g. version number).

19.3 Application Programming Interface

19.3.1 Overview

Read/write access is available via a C API.

19.3.2 Environment variables

The following environment variables are available to configure the behavior of the
API:

• ACT_DB: sets the credentials to access the DB. The format is
“USERNAME:PASSWORD@HOSTNAME/DBNAME”.

description Configuration description

Table 19.5 ACTconfigurations table

Field Description

Table 19.6 ACTconfigurationsContent table

Field Description

id Configuration ID

item Item name

instance Instance name

version Instance version number

Table 19.7 ACTinfo table

Field Description

variable Variable name

value Variable value

description Variable description
ALICE DAQ and ECS manual

Application Programming Interface 315
• ACT_VERBOSE: sets the logging level. Possible values are:

• 0: no messages.

• 1: error messages.

• > 2: same as 1 + all SQL queries.

If not set, the default value is 0.

19.3.3 Data types

Below is a list of the available data types.

ACT_handle

Description Handle to an ACT DB connection.

ACT_system

Description Structure defining an ACT system.

ACT_t_systemCategory

Description Enumerated type defining the system categories to which a system can belong.

Listing 19.1 ACT_handle type definition

1: struct _ACT_handle {
2: MYSQL *db; /* Handle to MySQL connection */
3: char verbose; /* Flag set to 1 for verbose logs */
4: };
5: typedef struct _ACT_handle * ACT_handle;

Listing 19.2 ACT_system type definition

1: typedef struct _ACT_system {
2: char *system; /* system name */
3: char *ECScomponent; /* corresponding ECS
4: component, if any (or NULL) */
5: ACT_t_systemCategory category; /* system category */
6: } ACT_system;

Listing 19.3 ACT_t_systemCategory type definition

1: typedef enum {
2: ACT_system_partition,
3: ACT_system_detector,
4: ACT_system_none, /* category undefined */
5: ACT_system_any /* used for search, match any of the

above */
6: } ACT_t_systemCategory;
ALICE DAQ and ECS manual

316 ALICE Configuration Tool
�

ACT_t_systemParams

Description Enumerated type defining the parameters available in a system.

ACT_item

Description Structure defining an ACT item.

ACT_t_itemCategory

Description Enumerated type defining the item categories to which an item can belong.

ACT_t_itemActiveStatus

Description Enumerated type defining the activation status in which an item can be.

Listing 19.4 ACT_t_systemParams type definition

1: typedef enum {
2: ACT_system_param_updateTimeout
3: } ACT_t_systemParams;

Listing 19.5 ACT_item type definition

1: typedef struct _ACT_item {
2: char *item; /* item name */
3: char *system; /* system it belongs to */
4: ACT_t_itemCategory category; /* item category */
5: ACT_instance *activeInstance; /* instance currently active,
6: may be NULL */
7: } ACT_item;

Listing 19.6 ACT_t_itemCategory type definition

1: typedef enum {
2: ACT_item_CTPconfig,
3: ACT_item_TRGconfig,
4: ACT_item_DCSconfig,
5: ACT_item_HLTconfig,
6: ACT_item_DAQconfig,
7: ACT_item_Partition,
8: ACT_item_none, /* category undefined */
9: ACT_item_any, /* used for search, match any of the above

*/
10: } ACT_t_itemCategory;
ALICE DAQ and ECS manual

Application Programming Interface 317
ACT_instance

Description Structure defining an ACT instance.

19.3.4 Database connection functions

Below is a list of functions providing basic connection functionality to the ACT
database.

ACT_open

Synopsis #include “act.h”

int ACT_open(const char *cx_params, ACT_handle *h)

Description Open a MySQL connection. Credentials should be given via the cx_params
parameter in the “USERNAME:PASSWORD@HOSTNAME/DBNAME” format. If an
empty string is passed the credentials are taken from the ACT_DB environment
variable. If both are empty, an error will be returned.

If successful, an handle to the DB connection will be stored in the h parameter.

Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

Listing 19.7 ACT_t_itemActiveStatus type definition

1: typedef enum {
2: ACT_activeState_updateRequested,
3: ACT_activeState_applying,
4: ACT_activeState_active,
5: ACT_activeState_updateFailed,
6: ACT_activeState_none, /* undefined */
7: ACT_activeState_any, /* used for search, match

any of the above */
8: } ACT_t_itemActiveStatus;

Listing 19.8 ACT_instance type definition

1: typedef struct _ACT_instance {
2: char *item; /* item name */
3: char *instance; /* instance name */
4: void *value; /* value content (BLOB) */
5: int size; /* size of value, in bytes */
6: ACT_t_itemCategory category; /* instance category */
7: ACT_t_itemActiveStatus status; /* instance activation status */
8: char *dependOnDetector; /* additional detector
9: dependence, if any */
10: char isActive; /* 1 if instance active, 0
11: otherwise */
12: } ACT_instance;
ALICE DAQ and ECS manual

318 ALICE Configuration Tool
�

ACT_close

Synopsis #include “act.h”

int ACT_close(ACT_handle h)

Description Close a MySQL connection and release previously used resources.

Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

19.3.5 API cleanup functions

Below is a list of functions providing memory cleanup. They should be used by
client programs to ensure efficient memory usage.

ACT_destroySystem

Synopsis #include “act.h”

int ACT_destroySystem(ACT_system *i)

Description Cleanup memory associated with a system.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_destroySystemArray

Synopsis #include “act.h”

int ACT_destroySystemArray(ACT_system *i, int size)

Description Cleanup memory associated with an array of systems. The parameter size
defines the number of systems to be destroyed.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

Application Programming Interface 319
ACT_destroyItem

Synopsis #include “act.h”

int ACT_destroyItem(ACT_item *i)

Description Cleanup memory associated with an item.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_destroyItemArray

Synopsis #include “act.h”

int ACT_destroyItemArray(ACT_item *i, int size)

Description Cleanup memory associated with an array of items. The parameter size defines
the number of items to be destroyed.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_destroyInstance

Synopsis #include “act.h”

int ACT_destroyInstance(ACT_instance *i)

Description Cleanup memory associated with an instance.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_destroyInstanceArray

Synopsis #include “act.h”

int ACT_destroyInstanceArray(ACT_instance *i, int size)

Description Cleanup memory associated with an array of instances. The parameter size
defines the number of instances to be destroyed.
ALICE DAQ and ECS manual

320 ALICE Configuration Tool
�

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

19.3.6 ACT READ access functions

Below is a list of functions providing READ access to the ACT database. All
functions should receive as parameter h an handle to the DB connection previously
created by a call to the ACT_open function.

ACT_getSystems

Synopsis #include “act.h”

int ACT_getSystems(ACT_handle h, ACT_t_systemCategory
category, ACT_system **systemsArray, int *systemsNumber)

Description Retrieve the list of all systems. The systems are stored in the systemsArray
parameter (NULL if no systems are found) and the number of retrieved systems
in the systemsFound parameter.

The category parameter can be used to restrict the retrieved systems to a given
system category. To retrieve all systems, use ACT_system_any.

NOTE: After being used, the systems should be destroyed via the
ACT_destroySystemArray function.

Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_getSystemsToUpdate

Synopsis #include “act.h”

int ACT_getSystemsToUpdate(ACT_handle h, ACT_t_itemCategory
category, ACT_system **systemsArray, int *systemsFound)

Description Retrieve the list of systems with items for which an update has been requested.
The systems are stored in the systemsArray parameter (NULL if no systems
are found) and the number of retrieved systems in the systemsFound parameter.

The category parameter can be used to restrict the considered items to a given
item category. To query all item categories, use ACT_item_any.

Disabled systems and items are ignored.

NOTE: After being used, the systems should be destroyed via the
ACT_destroySystemArray function.
ALICE DAQ and ECS manual

Application Programming Interface 321
Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_getSystemParamInt

Synopsis #include “act.h”

int ACT_getSystemParamInt(ACT_handle h, const char *system,
ACT_t_systemParams param, int *value)

Description Retrieve an integer parameter of a given system. The corresponding value is
stored in the value parameter.

Returns Upon successful completion, this function will return a value of zero. Otherwise,
the following value will be returned:

1: parameter’s value is NULL.

< 0: error while retrieving the parameter’s value.

ACT_getItem

Synopsis #include “act.h”

int ACT_getItem(ACT_handle h, const char *item, ACT_instance
**instancesArray, int *instancesNumber)

Description Retrieve the list of defined instances of a given item.The instances are stored
in the instancesArray parameter (NULL if no instances are found) and the
number of retrieved instances in the instancesNumber parameter.

Disabled systems and items are ignored.

NOTE: After being used, the instances should be destroyed via the
ACT_destroyInstanceArray function.

Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_getActiveItem

Synopsis #include “act.h”

int ACT_getActiveItem(ACT_handle h, const char *item,
ACT_instance **instance)

Description Retrieve the active instance of a given item. The instance is stored in the
instance parameter (NULL if no active instance is found).
ALICE DAQ and ECS manual

322 ALICE Configuration Tool
�

Disabled systems and items are ignored.

NOTE: After being used, the instance should be destroyed via the
ACT_destroyInstance function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_getActiveItem_bySystem

Synopsis #include “act.h”

int ACT_getActiveItem_bySystem(ACT_handle h, const char
*system, ACT_t_itemCategory category, ACT_instance
**instancesArray, int *instancesNumber)

Description Retrieve the list of active instances of a given system. The instances are
stored in the instancesArray parameter (NULL if no active instances are
found) and the number of retrieved instances in the instancesNumber
parameter.

If the system parameter is NULL, all systems are queried.

The category parameter can be used to restrict the considered items to a given
item category. To query all item categories, use ACT_item_any.

Disabled systems and items are ignored.

NOTE: After being used, the instances should be destroyed via the
ACT_destroyInstanceArray function.

Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_getItemsToUpdate

Synopsis #include “act.h”

int ACT_getItemsToUpdate(ACT_handle h, const char *system,
ACT_t_itemCategory category, ACT_item **itemsArray, int
*itemsNumber)

Description Retrieve the list of items (ordered by system name and item name) for which an
update has been requested. The items are stored in the itemsArray parameter
(NULL if no items are found) and the number of retrieved items in the
itemsNumber parameter.

The system parameter can be used to restrict the considered items to a given
system. To query all systems, use NULL.

The category parameter can be used to restrict the considered items to a given
item category. To query all item categories, use ACT_item_any.
ALICE DAQ and ECS manual

Application Programming Interface 323
Disabled systems and items are ignored.

NOTE: After being used, the items should be destroyed via the
ACT_destroyItemArray function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_isLockedItem

Synopsis #include “act.h”

int ACT_isLockedItem(ACT_handle h, const char *item, int
*countLocks)

Description Check if an item is locked. The countLocks parameter stores the number of
existing locks for the item, if zero the item is not locked.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

19.3.7 ACT WRITE functions

Below is a list of functions providing WRITE access to the ACT database. All
functions should receive as parameter h an handle to the DB connection previously
created by a call to the ACT_open function.

ACT_updateActivationStatus

Synopsis #include “act.h”

int ACT_updateActivationStatus(ACT_handle h, const char
*item, ACT_t_itemActiveStatus status, const char *comment)

Description Update the activation status of a given item (activationStatus field of the
ACTitems table). The allowed status transitions are:

• ‘update requested’ => ‘applying’

• ‘applying’ => ‘active’

• ‘applying’ => ‘update failed’

The optional comment parameter will update the activationComment field of
the ACTitems table.

NOTE: If the given item is disabled, an error will be returned.
ALICE DAQ and ECS manual

324 ALICE Configuration Tool
�

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_updateStatusMismatch

Synopsis #include “act.h”

int ACT_updateStatusMismatch(ACT_handle h, const char *item,
int statusMismatch)

Description Update the mismatch flag of a given item (statusMismatch field of the
ACTitems table). The statusMismatch parameter can have the following values:

• 0: the item is in the desired configuration

• 1: the item is not in the desired configuration

NOTE: If the given item is disabled, an error will be returned.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_lockItem

Synopsis #include “act.h”

int ACT_lockItem(ACT_handle h, const char *item, const char
*source, unsigned int run)

Description Lock an item (create a new row in the ACTlockedItems table). The source and
run parameters define the element which is locking the item. If a run number is
not applicable, zero should be used.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

ACT_unlockItem

Synopsis #include “act.h”

int ACT_unlockItem(ACT_handle h, const char *item, const char
*source, unsigned int run)

Description Unlock an item (delete one row from the ACTlockedItems table). The source
and run parameters define the element for which the lock should be removed.
ALICE DAQ and ECS manual

Tools 325
Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

19.4 Tools

Below is a list of the available command-line tools providing miscellaneous ACT
functionalities.

act_check_daemons.csh

Synopsis act_check_daemons.csh

Description Check if the different ACT DIM services and the corresponding DIM Name Servers
are available and reachable.

Prior to execution, the following environment variables must be set:

• DIMDIR: DIM root directory.

• DIM_DNS_NODE: ECS DIM Name Server node.

• DCS_DIM_DNS_NODE: DCS DIM Name Server node.

Upon successful completion, the tool will print a list of semicolon separated values
indicating the status of each checked service:

• -1: unknown

• 0: not running/reachable

• 1: running and reachable

The order of the printed values correspond to the following DIM services/Name
Servers:

• 1: ECS DIM Name Server

• 2: ACT_UPDATE_REQUEST_SERVER (ACT Update Request Server)

• 3: ecsDedicatedDaemon (EDD)

• 4: ECS DIM Name Server

• 5: dcsDedicatedDaemon (DDD)

• 6: ACT_UPDATE (ACT Bridge)

• 7: PVSSSys211Man4:DIMHandler (DCS Run Control Tool)

Returns Upon successful completion, this command returns a value of zero. Otherwise, 1
will be returned.
ALICE DAQ and ECS manual

326 ALICE Configuration Tool
�

act_compare_partitions

Synopsis act_compare_partitions

Description Check if partition definitions in ECS and ACT are consistent.

Prior to execution, the following environment variables must be set:

• ECS_DB_MYSQL_HOST: ECS database host.

• ECS_DB_MYSQL_DB: ECS database name.

• ECS_DB_MYSQL_USER: ECS database username.

• ECS_DB_MYSQL_PWD: ECS database password.

• ACT_DB: ACT database credentials in the
“USERNAME:PASSWORD@HOSTNAME/DBNAME” format.

Upon successful completion, the tool will print the discrepancies found, if any.

Returns Upon successful completion, this command returns a value of zero. Otherwise, the
following values will be returned:

-1: a mandatory environment variable is not set.

-2: an error occurred while retrieving information from the ACT DB.

act_ddd_dummy_dcs_rct

Synopsis act_ddd_dummy_dcs_rct

Description Emulates the RCT, allowing test setups to be fully functional.

Prior to execution, the following environment variable must be set:

• DCS_DIM_DNS_NODE: DCS DIM Name Server node.

Returns Upon successful completion, this command returns a value of zero. Otherwise, the
following values will be returned:

1: DCS_DIM_DNS_NODE environment variable is not set.

2: DIM_DNS_NODE environment variable could not be set to the value provided in
DCS_DIM_DNS_NODE.
ALICE DAQ and ECS manual

Graphical User Interface 327
19.5 Graphical User Interface

19.5.1 Overview

The ACT’s Web-based GUI was developed using modern Web technologies,
including PHP5, Javascript and Cascading Style Sheets (CSS). It uses the PHP Zend
Framework to implement a Model-View-Controller (MVC) architecture.

It is hosted on an Apache web server and can be accessed from the experimental
area (inside the experiment's technical network), the CERN General Purpose
Network (GPN) and the internet.

19.5.2 Authentication and Authorization

Authentication is implemented via the CERN Authentication central service,
providing Single Sign On (SSO) and removing the effort of authenticating the users
from the ACT software. This way, when a user tries to access the GUI, he is
redirected to the CERN Login page where it has to provide his credentials. If
successful, he is then redirected back to the GUI.

Authorization is based on CERN’s egroups. In order to access the GUI, users must
be members of the ALICE-ACT egroup.

19.5.3 Expert Mode

The Expert Mode section is used to populate the ACT DB, allowing system experts
and ACT administrators to create and modify systems, items and instances. It
also allows the execution of different actions and the display of different status
tables.

19.5.3.1 Actions

The following actions are available:

• Send Configuration Request: send a configuration request by executing the
act_update_request command. This will affect all items with activation
status equal to ‘update requested’.

• Put all Detectors in Standalone: activate, for all detectors, the instance that
defines the detector as being in standalone.

• Unlock all Items: remove all item locks (delete all entries of the
ACTlockedItems table).

• Remove all Status Mismatch: remove all status mismatch flags (set to zero the
statusMismatch field of the ACTitems table for all items)

• Put all Items in “Active”: change the activation status of all items to ‘active’.

• Disable all Partition CTP Configurations: deactivate, for all items defining a
CTP configuration for a given partition, the currently active instance.
ALICE DAQ and ECS manual

328 ALICE Configuration Tool
�

19.5.3.2 Status

The following status reports are available:

• Activation Status: display, for each item, the current activation status.
Additional item information, such as the lock status and the currently active
instance, is also displayed.

• Locked Items: display the list of locked items.

• Running Partitions: display the list of running partitions.

• Status Mismatch: display the list of items with the status mismatch flag set.

19.5.4 Run Coordination Mode

The Run Coordination Mode section is used to configure ALICE during data taking
periods, allowing the Run Coordination and the Shift Leaders to globally configure
the different ALICE sub-detectors and systems.

19.5.4.1 Partitions

The Partitions subsection allows users to configure the different ECS partitions
using a graphical wizard. These configurations can be saved for later reuse, thus
allowing for an easier and faster ACT usage). The following modes are available:

• Fully: all partition components (readout detectors, trigger detectors, CTP, DAQ
and HLT).

• Readout Detectors: only the partition’s readout detectors (including the selected
detectors DCS configuration).

• Readout Detectors (without DCS Configuration): only the partition’s readout
detectors (without including the selected detector’s DCS configuration).

• CTP: only the partition’s CTP configuration (including the corresponding
trigger detectors DCS configuration).

• CTP (without Trigger Detectors): only the partition’s CTP configuration
(without including the corresponding trigger detectors DCS configuration).

• HLT: only the partition’s HLT configuration.

• DAQ: only the partition’s DAQ configuration.

Additionally, the following actions can also be executed for each defined partition:

• Change CTP Configuration source to “ACT database”/“Local file”: toggle the
CTP configuration mode between ACT and local.

• Enable/Disable “Ignore ACT Pending Actions”: enable/disable the “Ignore
ACT pending actions” option in the partition’s PCA Human Interface.

NOTE: while a partition is running, no configurations nor actions can be executed
(a configuration in mode “Fully” can still be defined and saved).
ALICE DAQ and ECS manual

Graphical User Interface 329
19.5.4.2 Detectors

The Detectors subsection allows users to individually configure the different
ALICE detectors. The following actions are available:

• Put in Standalone: put the detector in standalone (if included in an ECS
partition, the detector will be excluded).

• Change Partition: include the detector in an ECS partition (or put it in
standalone).

• Configure: configure the detector.

NOTE: while a detector is running or being configured, no actions can be executed.

19.5.4.3 CTP

The CTP subsection allows users to configure the CTP. At the end of the
configuration the CTP processes will be restarted, therefore this configuration can
only be performed when no runs are active.

NOTE: this subsection executes a global CTP configuration and is therefore
different from the CTP partition configuration described in Section 19.5.4.1.
ALICE DAQ and ECS manual

330 ALICE Configuration Tool
�

ALICE DAQ and ECS manual

�

Part III

DDL and D-RORC
software Reference
Manual

December 2010

ALICE DAQ Project
DDL and
D-RORC

�

ALICE DAQ and ECS manual
20
DDL and
D-RORC
stand-alone
software

This chapter describes several software tools that allow using the RORC device in a
stand-alone manner.

20.1 Introduction. 334

20.2 Test programs for the RORC, DIU and SIU 335

20.3 Front-end Control and Configuration (FeC2) program . . . 344

20.4 DDL Data Generator (DDG) program 352

20.5 Stand-alone installation . 361

334 DDL and D-RORC stand-alone software
�

20.1 Introduction

The DATE kit provides the readout software to perform long-term high-volume
data taking with several RORC devices in an LDC (see Chapter 6 and Chapter 7).
Some software is also provided to use the RORC device in a stand-alone manner,
which is useful to facilitate the installation procedure, to help debugging in case of
problems, and to exploit the supplementary features of the RORC as a test device
for DATE. This stand-alone software covers four areas:

• The various test programs for the DDL and the RORC allow the user to identify
the DDL and RORC components, to reset them, to check their status, and to
execute a simple data taking task. The most important utility programs are
described in Section 20.2.

• The Front-end Control and Configuration (FeC2) interpreter program allows the
user to utilize the “backward” channel of the RORC device to send commands
and data blocks to the front-end electronics. The short description of this
program along with the review of the FeC2 script language is described in
Section 20.3.

• The DDL Data Generator (ddg) program allows the user to operate the RORC as
a device to generate simulated event fragments as they would be produced
from some front-end electronics. The handling of this program is described in
Section 20.4. The DDG software is used for testing the DATE system.

• All functionalities of the of the stand-alone software are available as C API as
well. One application is to call these C routines to configure and control the
front-end electronics instead of using FeC2 scripts. This might be the better
choice when aiming at more complex and interactive software for testing
detector electronics. The C API documentation is available in Chapter 21.

The precondition to run this stand-alone software is a loaded physmem and
rorc_driver kernel modules. The installation procedure is explained in Section 20.5.
When the DDL and RORC software is installed via the DATE kit, all the programs
and scripts are located in the directories /date/rorc/Linux and
/date/physmem/Linux.

If several RORC devices are in place, the DATE readout program and the
stand-alone programs can run simultaneously on different channels. This is
possible because two physmem devices (see Chapter 15) are used: DATE memory
banks access this memory via the /dev/physmem1 device, and the stand-alone
RORC programs via the /dev/physmem0 device. Some programs have an option
to access /dev/physmem1 device as well; this option can be used only when DATE
is not running.

The different parts of DDL (RORC, DIU, SIU) are described in Chapter 7. Further
documentation the can be found at the Web site
http://cern.ch/ddl/ddl_docu.html. Besides, each program prints a short
explanation of usage via the -h or --help options.
ALICE DAQ and ECS manual

Test programs for the RORC, DIU and SIU 335
20.2 Test programs for the RORC, DIU and SIU

In this chapter the most important test stand alone programs are presented. A very
detailed description of all test programs can be found in RORC Library User’s
Manual at http://cern.ch/ddl/rorc_docu.html page.

rorc_find and rorc_qfind

Synopsis rorc_find

rorc_qfind

Parameters: none

Description The rorc_find and rorc_qfind programs list the type and hardware
identification of the RORC cards plugged in the machine and of the DIUs, either
plugged on or integrated in the RORCs. The rorc_find program tries to open all
the RORC devices and reads from their configuration EPROM the hardware
identification. If one RORC channel is in use, it can not be opened, so its feature will
not be listed. The rorc_qfind program reads the /proc/rorc_map process file
prepared by the rorc_driver in boot time. It shows all RORC channels and the
process id’s as well if a channel is in use.

The type of the RORC device could be pRORC (PCI revision: 1), D-RORC (PCI rev:
2), integrated D-RORC (PCI rev: 3), D-RORC version 2 (PCI-X version, rev: 4) and
PCI Express D-RORC (PCI rev: 5).
ALICE DAQ and ECS manual

336 DDL and D-RORC stand-alone software
�

Examples

rorc_reset

Synopsis rorc_reset [-{M|m} <RORC_minor>] [-{C|c} <DDL_channel>]
[-D|d|B|b|S|s|F|f|O|o|E|e|N|n]

Description The rorc_reset program initializes a RORC and/or a DDL channel. Depending
on the given program options, the program resets the different parts of the RORC,
the DIU or the SIU. Resetting the RORC means emptying all its FIFOs, clearing all
error bits, and putting all programmable features to their reset value. Resetting the

Listing 20.1 Example of rorc_find program

> rorc_find

The following device(s) found:

 Minor Channel Device type and HW identification

 0 0 integ. DRORC2 DRORC2 2v1 INT. LD: EP2S30 S/N: 03034

 embedded DIU

 1 embedded DIU

 1 0 integ. DRORC2 DRORC2 2v1 INT. LD: EP2S30 S/N: 04021

 embedded DIU

 1 embedded DIU

 4 RORC channel(s) not in use was found.

 RORC driver reported 2 RORC device(s).

Listing 20.2 Example of rorc_qfind program

> rorc_qfind

 The following device(s) found:

 Minor PCI_rev Com/Status Speed Hw_s/n Fw_ID PID_0 PID_1

 0 4 0x04100147 100 03034 2.12 0 0

 1 4 0x04100147 100 04021 2.12 0 0

 2 RORC device(s) with 4 channel(s) was found.
ALICE DAQ and ECS manual

Test programs for the RORC, DIU and SIU 337
DIU or the SIU means cutting the DDL link and putting all programmable features
to their reset value; afterwards the DDL link automatically re-establishes itself.

Parameters and
switches:

• the parameter RORC_minor defines the minor device number of the RORC in
case there are several cards. The associated device file is /dev/prorcN, where
N is the minor device number starting from 0. The default minor device number
is 0.

• the parameter DDL_channel chooses the channel (0 or 1) in case of an
integrated D-RORC. The default channel is 0.

• the switch -D or -d resets the DIU.

• the switch -B or -b resets both the RORC and the DIU.

• the switch -S or -s resets the SIU.

• the switch -F or -f clears the rorcFreeFifo.

• the switch -O or -o clears the other FIFOs of the RORC.

• the switch -E or -e clears the error bits of the RORC.

• the switch -N or -n clears the byte counters of the RORC.

• in case no reset switch is given, only the RORC is reset.

Before exiting the program writes “RORC reset OK”. It means the requested reset
command is sent, but the success of the command is not checked. The user can test
how successful the reset was by calling the rorc_status, diu_status, or
siu_status program.

rorc_id, diu_id, siu_id

Synopsis rorc_id [-{M|m} <RORC minor>] [-{C|c} <DDL channel>]
[-V <major version> -v <minor version>
-{P|p} <PLD version> -{S|s} <serial#> -{N|n} <channels>]
[-{D|d}] [-{T|t} <time-out>]

diu_id [-{M|m} <RORC_minor>] [-{C|c} <DDL_channel>]
[-V <major version> -v <minor version>
-P <PLD version> -B <speed version> -S <serial#>]

siu_id [-{M|m} <RORC_minor>] [-{C|c} <DDL_channel>]
[-V <major version> -v <minor version>
-P <PLD version> -B <speed version> -S <serial#>]

Description The rorc_id program reads and displays the type, the hardware and the
firmware identification of the RORC. It can display the DIU or SIU firmware
identification as well. Finally the program informs whether the program library
version and the RORC firmware are compatible.
ALICE DAQ and ECS manual

338 DDL and D-RORC stand-alone software
�

The type of the RORC is written as “RORC revision number”. It is a number read
from the PCI configuration space. If its value is 1, the device is a pRORC, if 2 then
the device is a D-RORC having one DDL channel, if 3 then the device is a dual
channel integrated D-RORC, if 4 then the device is a version 2 D-RORC (PCI-X
version), and if 5 then the device is a PCI Express D-RORC.

The hardware identification word of the RORC contains the hardware release date
and version number. The firmware identification word of the RORC contains the
firmware release date, the firmware version, and the size of the rorcFreeFifo.
The DIU or SIU firmware identification words contain the firmware release date
and version number.

To get the DIU or SIU firmware identification the program sends a command. The
SIU firmware identification can be asked only if the link is up. After waiting as
many microseconds for the answer as specified in time-out parameter, the
program interprets and displays the reply.

The rorc_id program can be used for writing the RORC hardware identification
into the RORC with the help of -V, -v, -P, -S and -N switches. This feature is
intended for RORC developers only. For writing the hardware identification a
special resistor must be soldered. If this resistor is soldered out, the hardware
identification cannot be changed. Because of this the usage of these switches will
not be explained here.

The diu_id program reads and displays the hardware identification words of the
DIU. The DIU hardware identification word contains the card major and minor
version numbers (e.g. 2.0), the PLD version code (e.g. 20K60E), the card speed
version (e.g. 2125 Mbps), and the card serial number. If the major version number is
1 then the card is a prototype (old) DDL card, if it is 2 then the card is the final (new)
card.

Note: For embedded DIUs, i.e. when the DIUs are integrated onto the D-RORC
card, the DIU does not have separated hardware identification. It is identified as a
one channel of the RORC card.

The siu_id program reads and displays the hardware identification words of the
SIU. The SIU hardware identification word contains the card major and minor
version numbers (e.g. 2.0), the PLD version code (e.g. 20K60E), the card speed
version (e.g. 2125 Mbps), and the card serial number. If the major version number is
1 then the card is a prototype (old) DDL card, if it is 2 then the card is the final (new)
card. The SIU hardware identification words can be read only if the link is up.

The diu_id and siu_id programs can be used for writing this information into
the DIU’s or SIU’s memory as well. This feature is made for DDL developers only.
For writing the hardware identification a special resistor must be soldered in the
card. If this resistor is soldered out, the hardware identification cannot be changed.
Because of this the usage of -V, -v, -P, -B and -S switches will not be explained
here.

Parameters and
switches:

• the parameter RORC_minor defines the minor device number of the RORC in
case there are several cards. The associated device file is /dev/prorcN, where
N is the minor device number starting from 0. The default minor device number
is 0.

• the parameter DDL_channel chooses the channel (0 or 1) in case of an
integrated D-RORC. The default channel is 0.
ALICE DAQ and ECS manual

Test programs for the RORC, DIU and SIU 339
• the switch -D or -d displays in addition the hardware and firmware
identifications of the DIU and SIU.

• the parameter time-out defines the waiting time in microseconds for the DIU
and SIU responds. The default value is 1000 microseconds.

rorc_status, diu_status, siu_status

Synopsis rorc_status [-{M|m} <RORC_minor>] [-{C|c} <DDL_channel>]

diu_status [-{M|m} <RORC_minor>] [-{C|c} <DDL_channel>]
 [-{T|t} <time-out>] [-{V|v} <diu_version>]

siu_status [-{M|m} <RORC_minor>] [-{C|c} <DDL_channel>]
[-{T|t} <time-out>] [-{V|v} <diu_version>]

Description The rorc_status program besides displaying the same information as
rorc_id, reads the type of the RORC, the control/status and error registers and
displays information about RORC status (e.g. working mode, rorcFreeFifo
status, link status, flow control status) and errors.

The type of the RORC is written as “RORC revision number”. It is a number read
from the PCI configuration space. If its value is 1, the device is a pRORC, if 2 then
the device is a D-RORC having one DDL channel, if 3 then the device is a dual
channel integrated D-RORC, if 4 then the device is a version 2 D-RORC (PCI-X
version), and if 5 then the device is a PCI Express D-RORC.

The diu_status program sends a command to the DIU, waits for its reply and
displays the DIU status. The program displays the hardware and firmware
identifications of the DIU as well.

The siu_status program sends a command to the SIU, waits for its reply and
displays the SIU status. The SIU receives the commands and replies only if the link
is up. The program displays the SIU hardware and firmware identifications as well.

Parameters and
switches:

• the parameter RORC_minor defines the minor device number of the RORC in
case there are several cards. The associated device file is /dev/prorcN, where
N is the minor device number starting from 0. The default minor device number
is 0.

• the parameter DDL_channel chooses the channel (0 or 1) in case of an
integrated D-RORC. The default channel is 0.

• the parameter time-out defines the waiting time in microseconds for the DIU
responds. The default value is 1000 microseconds.

• the parameter diu_version chooses the version of the DIU. The value can be
1 for the prototype version, or 2 for the final version (plugged or embedded).
The default value is 2.
ALICE DAQ and ECS manual

340 DDL and D-RORC stand-alone software
�

rorc_receive

Synopsis rorc_receive
[[{-M|-m|--minor} <RORC_minor>]
|{-r|--revision} <revision> {-n|--serial} <serial>]
[{-C|-c|--channel} <DDL_channel>]
[-v|--verbose]
[{-G|-g|--generator} <loop-back mode>]
[-D|-d|--no_scatter]
[{-R|--reset_lev} <reset_level>]
[{-X|-x|--check} <check_level>]
[-Y|-y|--DDL_header]
[-Z|-z|--no_RDYRX]
[{-P|--phys_minor} <physmem_minor>]
[{-B|-b|--page} <page_length>]
[{-U|-u|--physmem} <useable_memory>]
[{-O|-o|--offset} <memory_offset>]
[{-E|-e|--events} <events>]
[{-I|-i|--init_word} <init_word>]
[{-p|--pattern} {c|a|0|1|i|d|<mif_file_name>}]
[{-S|-s|--stat_file} <stat file>]
[{-L|-l|--length} <data_length>]
[{-J|-j|--rand_len} <random_seed>]
[{-N|-n|--init_count} <initial_count>]
[{-F|--max_fifo} <max_FIFO>]
[{-f|--min_fifo} <min_FIFO>]
[{-T|--sleep_time} <sleep_time>]
[{-t|--load_sleep} <load_sleep_time]
[{-W|-w|--resp_wait} <wait_time>]
[{-Q|--byte_print} <GBs_to_print>]
[{-q|--page_print} <pages_to_print>]
[{-K|--output_file} <output_file>]
[{-k|--binary_output} <binary_output_file>]
[{-A|-a|--front_end} <FEE_address>]

Description The rorc_receive program receives fragments from the DDL link or the internal
data generator of the RORC. It uses the physmem package for allocating the
memory blocks where the data is stored. The program compares word by word the
received data with its expected value. It also checks whether the fragment length in
the DTSW word matches the actual fragment length. This program provides a
functional test of the RORC and DDL hardware/software.

The rorc_receive program can be executed for several RORCs in parallel. In this
situation a distinct region of the physmem memory must be assigned to each
running rorc_receive process. The assignment of physmem memory can be
done via program options (with the switches -U and -O).

Parameters and
switches:

• the parameter RORC_minor defines the minor device number of the RORC in
case there are several cards. The associated device file is /dev/prorcN, where
N is the minor device number starting from 0. The default minor device number
is 0.
ALICE DAQ and ECS manual

Test programs for the RORC, DIU and SIU 341
• the parameter revision is the RORC’s PCI revision number. It must be < 6.

• the parameter serial is the RORC’s hw serial number. If given, the RORC is
identified by the revision and serial not by the parameter RORC minor.

• the parameter DDL_channel chooses the channel (0 or 1) in case of an
integrated D-RORC. The default channel is 0.

• the switch -v prints details for debugging (verbose mode). Note that the switch
-V is not implemented.

• the switch -G or -g enables the internal data generator of the RORC and the
parameter loop-back mode selects the in loop-back location. The accepted
values are:
0: do not loop-back, thus sent data via the link.
1: set the loop-back inside the DIU.
2: set the loop-back inside the SIU.
any other value: set the loop-back inside the RORC.
The default value for the parameter loop-back mode is 0.

• the switch -D or -d enforces that the received fragments are not scattered in the
physmem memory. Every event page will be written on the same physical
address, hence pages will be overwritten by each other.

• the parameter reset_level defines which RORC and DDL elements are reset.
The accepted values are:
0: do not reset the RORC, neither the DIU nor the SIU.
1: reset the RORC only.
2: reset the RORC and the DIU, but not the SIU
3: reset the RORC, the DIU and the SIU before collecting data.
The default value for the parameter reset level is 3.

• the parameter check_level defines which parts of the received fragment are
checked. The pattern for checking is given by the parameter pattern. The
accepted values are:
-1: do not stop if DTSTW problem occurs and do not check the fragment
0: do not check the fragment
1: check the first word of the fragment
2: check the fragment, expect the first word
3: check the whole fragment
The default value for the parameter check_level is 3.

• the switch -Y defines that the received fragment contains the Common Data
Header (see Section 3.9). The contents of this header is not checked.

• the switch -Z prevents sending the RDYRX and EOBTR commands. This switch
is implicitly set when the -G or -A switch is used.

• the parameter physmem_minor defines the minor device number of the
physmem memory device. It can be 0 for /dev/physmem0 device, or 1 for
/dev/physmem1. The latter can be used only when DATE is not running in the
same RORC channel. The default physmem device is /dev/physmem0.

• the parameter page_length defines the size in bytes of the memory blocks
(data pages). The default page size is 4096 bytes.

• the parameter usable_memory defines the amount in MB of the memory
requested from the /dev/physmemN (N = 0 or 1) device. The default amount
is 30 MB.

• the parameter memory_offset defines the offset in MB of the memory
ALICE DAQ and ECS manual

342 DDL and D-RORC stand-alone software
�

requested from the /dev/physmemN (N = 0 or 1) device relative to its base
address. The default offset is 0 MB.

• the parameter events defines the number of fragments to be read, or to be
generated if the switch -G is used. The value 0 specifies an unlimited number of
fragments, which is also the default value.

• the parameter init_word sets the second word of each fragment when the
switch -G or -g is used. The default value for this parameter is 0. The first word
of each fragment is an incrementing counter value starting from 1.

• the switch -p or --pattern sets the data pattern of each fragment when the
switch -G or -g is used. The accepted possibilities are:
‘c’: use constant data given by parameter init word.
‘a’: use alternating data.
‘0’: use flying 0 data starting from 0xfffffffe.
‘1’: use flying 1data starting from 0x00000001.
‘i’: use incremental data starting with parameter init word.
‘d’: use decremental data starting with parameter init word.
mif file name: Memory Initialization File (.mif). It can define a complete
fragment. For the MIF description see e.g.
http://www.mil.ufl.edu/4712/docs/mif_help.pdf
The default character for the pattern is ‘i’.

• the parameter stat_file defines the name of the file where the number of
bytes transferred is written. If given, and the file already exist, the program
adds the number of transferred bytes to the value already in the file.

• the parameter data_length defines either the size of the expected largest
fragment, or the maximum size of the generated fragment by the internal data
generator of the RORC when the switch -G is set. The size is given in words (4
bytes). The default size is 524287 words.

• the parameter random_seed defines the seed value for the generation of
fragments of random length by the internal data generator of the RORC when
the switch -G is set. If the parameter is set, the minimum length is 1 and the
maximum length is the parameter data length rounded down to the nearest
integer of power of 2. Using 0 as parameter value, the fragments have constant
size. This is also the default value.

• the parameter initial_count defines the event count (first data word) of the
first fragment. The default value for this parameter is 1.

• the parameter max_FIFO controls the filling of the rorcFreeFifo. It defines
the maximal number of entries, hence it stops filling if the number of entries is
reaches this value. The maximal value is 128, which is also the default value.

• the parameter min_FIFO controls the filling of the rorcFreeFifo. It defines
the minimal number of entries, hence it starts filling if the number of entries is
lower then this value. The default value for this parameter is 127.

• the parameter sleep_time defines the waiting period in milliseconds after
each received fragment in order to simulate a loaded LDC. The default period is
0 milliseconds.

• the parameter load_sleep_time defines the waiting period in milliseconds
before each time new physmem address is loaded into the RORC’s Ready FIFO.
The default period is 0 milliseconds.

• the parameter wait_time defines the waiting period for command responses
ALICE DAQ and ECS manual

Test programs for the RORC, DIU and SIU 343
in microseconds. The default period is 1000 microseconds.

• the parameter GBs_to_print specifies that whenever this number of received
data is transferred, the total number of received GB is printed. The default value
is 1 GB.

• the parameter pages_to_print specifies that whenever this number of
received pages is transferred, the total number of received pages is printed. The
default value is 0, hence no page printout.

• the parameter output_file defines the name of the file where the received
fragments are dumped as a text file. Each fragment starts with comment lines
(indicated by the ‘#’ character) that contains the event number (i.e. event
fragment number) followed by the block number and the block length in 4-byte
words, and then follow lines where each one shows a data word in hexadecimal
format. This sequence repeats for each block and event fragments. The data
words are not checked, hence this parameter implies the switch -x 0.

• the parameter binary_output_file defines the name of the file where the
received fragments are dumped in binary format. The format of the fragments
is the same as that of the text file (see the previous parameter). The comment
lines are dumped as ASCII (together with the new line characters), while the
data is dumped in binary. So the binary file is much smaller than the text one.
At the same time in hexadecimal dump the event fragments can be easily
found. The data words are not checked, hence this parameter implies the switch
-x 0.

• the parameter FEE_address enforces that the data reading is carried out with
the Start Block Read (STBRD) command. It defines the front-end address which
is part for the STBRD command. This parameter is mandatory when the -A or
-a switch is set.

Examples > rorc_receive -m 1 -c 0 -g 3 -p i -l 1000 -x 3

Uses the internal data generator of the RORC with minor device number 1 and
channel 0. The generated incremental data words have a fixed size of 1000 words,
whereas the whole fragment is checked.

> rorc_receive -m 2 -c 1 -o 60 -z -r 2 -K /tmp/data.raw

Reads fragments from channel 1 of the dual channel D-RORC with minor device
number 2. The RORC and the DIU are reset, but not the SIU. The RDYRX is not
sent. The data words are dumped to the file /tmp/data.raw without checks. The
physmem memory is utilized between 60 MB and 90 MB relative to its base address.
ALICE DAQ and ECS manual

344 DDL and D-RORC stand-alone software
�

20.3 Front-end Control and Configuration
(FeC2) program

20.3.1 General description of the FeC2 program

FeC2

Synopsis FeC2 [-{M|m} <Rorc_minor> |
-{R|r} <revision> -{N|n} <serial>]
[-{C|c} <DDL_channel>] [-{P|p} <phys_minor>]
[-{F|f} <FeC2_script_file>] [-{L|l} <log_file>]
[-{O|o} <mem_offset>] [-{U|u} <mem_size>]
[-{T|t} <DDL_timeout>] [-S|-s] [-v] [-H|-h]

Description The FeC2 program can be used for controlling and configuring the Front-end
Electronics (FEE) via the DDL. It downloads commands and data blocks to the FEE,
and it reads status and data blocks from the FEE. The user needs to write a script
file following the FeC2 syntax.

Parameters and
switches:

• the parameter RORC_minor defines the minor device number of the RORC in
case there are several cards. The associated device file is /dev/prorcN, where
N is the minor device number starting from 0. The default minor device number
is 0.

• the parameter revision is the RORC’s revision number. It must be < 6.

• the parameter serial is the RORC’s hardware serial number. If given, the
RORC is identified by the revision and serial, not by the parameter
RORC_minor.

• the parameter DDL_channel chooses the channel (0 or 1) in case of an
integrated D-RORC. The default channel is 0.

• the parameter physmem_minor defines the minor device number of the
physmem memory device. It can be 0 for /dev/physmem0 device, or 1 for
/dev/physmem1. The latter can be used only when DATE is not running in the
same RORC channel. The default physmem device is /dev/physmem0.

• the parameter FeC2_script_file defines the name of the script file to be
interpreted. The default name is FeC2.scr. The syntax of FeC2 script files is
described in Section 20.3.2.

• the parameter log_file defines the name of the log file. If not given, the
standard output (stdout) stream is used.

• the parameter mem_offset defines the offset in MB of the memory requested
from the /dev/physmem0 device relative to its begin. The default offset
depends on the parameters RORC minor and DDL channel in the following
way: mem offset = (RORC_minor * 2 + DDL_channel) * 8. Hence for
each channel a separate block of 8 MB physmem memory is assigned, which
allows to run several FeC2 scripts in parallel on the same machine.
ALICE DAQ and ECS manual

Front-end Control and Configuration (FeC2) program 345
• the parameter mem_size defines the size in MB of the memory requested
from the /dev/physmem0 device. The default amount is 8 MB in accordance
with the above scheme of the default value for the parameter mem_offset.

• the parameter DDL_timeout defines the waiting time in microseconds for the
DDL commands. The default value is 1000 microseconds.

• the switch -S or -s enables the use of shared memory to accelerate the
download of data blocks that have been written beforehand into files. When
this switch set, each file is stored into shared memory, so that the next time the
file will be used, it will be retrieved from memory. The usage of the shared
memory is as follows:
- Each DDL channel has its own shared memory segments.
- The maximum number of channels per LDC is 16.
- The maximum number of files per channel is 15420.
- The maximum length of a file name is 255 characters.
- The maximum number of shared memory segments per channel is 127.
- Each shared memory segment can host 4 MB minus 8 bytes for administration.
The following utility program can be used to remove the shared memory
segments, where the switch -x just scans them:

clean_shm [-m <RORC_minor>] [-c <DDL_channel>] [-x]

• the switch -v prints details for debugging (verbose mode). Note that the switch
-V is not implemented.

• the switch -H or -h prints a short help message.

20.3.2 Syntax of script files for the FeC2 program

The instruction and its parameters can be separated by space(s) or tabulator(s). Any
parameter can be an environment variable. In this case the name must start with a $
character. Each instruction should be written in one line. Any number of empty
lines is allowed. Lines starting with a ‘#’, ‘*’ or ‘;’ character are considered as
comment. After the character ‘;’ or ‘//’ the remaining part of any line is considered
as in-line comment. Comment lines, in-line comments and empty lines can be used
in data files as well. All instructions will be executed sequentially up the end of the
script file, or until reaching a return/stop command, or till the occurrence of an
error.

20.3.2.1 FeC2 instructions related to the DDL

reset

Synopsis reset [RORC | DIU | SIU]

Description Reset the given element of the DDL link. If no parameter is given, then the RORC is
reset.
ALICE DAQ and ECS manual

346 DDL and D-RORC stand-alone software
�

read_DDL_status

Synopsis read_DDL_status

Description Reads and prints the DIU and SIU status. This command is executed only if the -v
option is switched on.

write_RDYRX

Synopsis write_RDYRX

Description Send an RDYRX command to the FEE.

write_EOBTR

Synopsis write_EOBTR

Description Send an EOBTR command to the FEE.

write_command

Synopsis write_command <command_code>

Description Send a DDL command to the FEE.

Parameter: • the parameter command_code is a hexadecimal number (maximum 19 bits).

write_block

Synopsis write_block <address> <file_name> [<format>]

Description First send the address to the FEE, and then send the block of data to the FEE.

Parameters: • the parameter address is a hexadecimal number (maximum 19 bits) within
the address space of the FEE to which the data block is sent.

• the parameter file_name is the name of the file where the block of data is
stored. The maximum length of this file is (2^19 -1 = 524287) words.

• the parameter format specifies in C style format (e.g. “%x”) the reading mode
of the words from the file. If omitted, the binary mode is used.
ALICE DAQ and ECS manual

Front-end Control and Configuration (FeC2) program 347
write_block_multiple

Synopsis write_block_multiple <poll_address> <status> <mask>
<time-out> <FEE_address> <block_size> <file_name> [<format>]

Description First read the data from the file called file_name and divide it into sub-blocks of
block_size words length. For each sub-block send the incremented address to
the FEE followed by the data, thus the first sub-block goes to FEE_address, the
second sub-block to FEE_address + block_size, the third sub-block to
FEE_address + 2 * block_size, and so forth. At the end of each sub-block
send a status read request to the poll address and compare the reply (after
applying mask as bitwise AND operation) with the value status. Repeat the
status read request until an exact match happens or the time-out is expired. In
the latter case stop looping and set the “check_fail” flag (see Section 20.3.2.2).
The length of the file needs to correspond with the length expected for the given
FEE address. The maximum length allowed is 2^19 -1 = 524287 words.

Parameters: • the parameter poll_address is a hexadecimal number (maximum 19 bits)
within the address space of the FEE to which the status read request command
is sent.

• the parameter status is the compare value (maximum 19 bits) for the check.

• the parameter mask is applied as bitwise AND operation to the received value
from the FEE before the comparison against the parameter status is done.

• the parameter time-out defines the maximum duration in microseconds to
repeat the polling operation.

• the parameter FEE_address is a hexadecimal number (maximum 19 bits)
within the address space of the FEE to which the data block is sent.

• the parameter block_size is the number of words of sub-blocks to be sent
before the next status check.

• the parameter file_name is the name of the file where the block of data is
stored. The maximum length of this file is (2^19 -1 = 524287) words.

• the parameter format specifies in C style format (e.g. “%x”) the reading mode
of the words from the file. If omitted, the binary mode is used.

read_and_print

Synopsis read_and_print <address> <format> [<stream>]

Description Send a command to the FEE and print the received value.

Parameters: • the parameter address is a hexadecimal number (maximum 19 bits) within
the address space of the FEE to which the status read request command is sent.

• the parameter format specifies in C style format (e.g. “%x”) the printing
mode of the received value.

• the parameter stream defines the file name where to append the output. If
omitted, the parameter log_file from the FeC2 calling sequence is used,
ALICE DAQ and ECS manual

348 DDL and D-RORC stand-alone software
�

otherwise the standard output is used.

read_and_check

Synopsis read_and_check <address> <status> <mask>

Description Send a command to the FEE and check the received value. If the check fails, the
“check_fail” flag is set (see Section 20.3.2.2).

Parameters: • the parameter address is a hexadecimal number (maximum 19 bits) within
the address space of the FEE to which the status read request command is sent.

• the parameter status is the compare value (maximum 19 bits) for the check.

• the parameter mask is applied as bitwise AND operation to the received value
from the FEE before doing the comparison with the parameter status.

read_until

Synopsis read_until <address> <status> <mask> <time-out>

Description Send a command to the FEE and check the received value. This polling operation is
repeated until the check is successful or the time-out is reached. In the latter case,
the “check_fail” flag is set (see Section 20.3.2.2).

Parameters: • the parameter address is a hexadecimal number (maximum 19 bits) within
the address space of the FEE to which the status read request command is sent.

• the parameter status is the compare value (maximum 19 bits) for the check.

• the parameter mask is applied as bitwise AND operation to the received value
from the FEE before doing the comparison with the parameter status.

• the parameter time-out defines the maximum duration in microseconds
before repeating the polling operation.

read_block

Synopsis read_block <address> <file_name> [<format>]

Description First send the address to the FEE, and then read the block of data from the FEE. The
received words are written to the file. The length of the block of data is under the
control of the FEE.

Parameters: • the parameter address is a hexadecimal number (maximum 19 bits) within
the address space of the FEE from where the block of data is read.

• the parameter file_name is the name of the file where the received words
are written.
ALICE DAQ and ECS manual

Front-end Control and Configuration (FeC2) program 349
• the parameter format specifies in C style format (e.g. “%x”) the writing mode
of the words to the file. If omitted, the binary mode is used.

read_and_check_block

Synopsis read_and_check_block <address> <file name> [<format>]

Description First send the address to the FEE, and then read the block of data from the FEE. The
received words are compared with the ones in the file. The length of the block of
data is under the control of the FEE. If the check fails, the “check_fail” flag is set
(see Section 20.3.2.2)

Parameters: • the parameter address is a hexadecimal number (maximum 19 bits) within the
address space of the FEE from where the block of data is read.

• the parameter file name is the name of the file which contains the words for
comparison.

• the parameter format specifies in C style format (e.g. “%x”) the reading mode
of the words from the file. If omitted, the binary mode is used.

20.3.2.2 FeC2 instructions related to the program flow

define

Synopsis define <name> <value>

Description Whenever name occurs as parameter of an FeC2 instruction, the value is used
instead. The definition of name must appear before its first use. To distinguish
between name and numbers, the name must start with a letter, whereas a
hexadecimal constants must start with 0x.

loop_on, loop_off

Synopsis loop_on <loop_number> <loop_uswait> <loop_cont_if_error>

FeC2 instruction(s)

loop_off

Description All FeC2 instructions (with some exception) which are between loop_on and
loop_off will be repeated loop_number times. The following FeC2 instructions
will not be repeated even if they are between loop_on and loop_off: reset,
write_RDYRX, write_EOBTR, define, loop_on, loop_off, wait,
call_file, return, stop_if_failed, stop. The loop_on can not be
nested. A second call of loop_on overwrites the previous loop parameters.

Parameters: • the parameter loop_number defines how many times the FeC2 instruction will
ALICE DAQ and ECS manual

350 DDL and D-RORC stand-alone software
�

be repeated. If its value is less then 2 the command is equivalent to a loop_off
command.

• the parameter loop_uswait defines how many microseconds to wait at the
end of each loop.

• the parameter loop_cont_if_error specifies whether the loop should be
interrupted if a check in the instruction inside the loop fails. If its value is 0, the
looping continues. For any other values the program jumps out of the loop. This
concerns only the FeC2 instructions read_and_check,
read_and_check_block, and read_until.

Example loop_on 2 0 0
instruction 1
instruction 2
instruction 3
loop_off

is equivalent with the following sequence:

instruction 1
instruction 1
instruction 2
instruction 2
instruction 3
instruction 3

wait

Synopsis wait <usecs>

Description The execution is suspended for a period of usecs microseconds.

call_file

Synopsis call_file <file_name>

Description The execution jumps to the FeC2 script file whose name is file_name. If this file is
not found, the execution is stopped. Recursive calls are not allowed.

return

Synopsis return

Description The execution of the current FeC2 script is stopped and if possible the control is
returned one level higher.
ALICE DAQ and ECS manual

Front-end Control and Configuration (FeC2) program 351
stop_if_failed

Synopsis stop_if_failed [<exit_code>]

Description The execution is stopped with the given exit_code (the default one is 1) if in the
previous instruction the check has failed. This concerns the following FeC2
instructions: read_and_check, read_and_check_block, read_until, and
write_block_multiple.

stop

Synopsis stop [<exit_code>]

Description The execution is stopped with the given exit_code (the default one is 0).

20.3.2.3 Example of an FeC2 script

Listing 20.3 shows a FeC2 script used to carry out some basic tests on the FEE.
Some symbolic names are defined (lines 15-18) and the RORC as well as the SIU are
reset (lines 20-21) at the beginning. A command is sent (line 23) to initialize the FEE
and the effect is verified (lines 24-25). The status of some registers is read and
copied into a file (line 27-28). Finally, a block of data is sent to the FEE (line 30) and
read back (line 31) for the purpose of testing. If all tests are passed, the exit code of
this script is 0 (line 34).

Listing 20.3 Example of an FeC2 script

13: # FeC2 script
14:
15: define PATGEN 0x0
16: define EVLEN 0x100
17: define STATUS status.out
18: define PROBA proba.hex
19:
20: reset RORC
21: reset SIU
22:
23: write_command 0x10f
24: read_until EVLEN 0x0f 0xff 10000000
25: stop_if_failed -1
26:
27: read_and_print PATGEN “Patgen status: “x%x” STATUS
28: read_and_print EVLEN “Evlen status: 0x%x” STATUS
29:
30: write_block 0x600 PROBA “%x”
31: read_and_check_block 0x600 PROBA “%x”
32: stop_if_failed -2
33:
34: stop
ALICE DAQ and ECS manual

352 DDL and D-RORC stand-alone software
�

20.4 DDL Data Generator (DDG) program

20.4.1 General description of the DDG program

ddg

Synopsis ddg [-{F|f} <config_file>] [-{L|l} <log_file>]
[-{P|p} <physmem_minor>] [-{S|s} <SMI_object>
[-{T|t} <time-out>] [-{N|n}] [-v] [-H|-h]

Description The ddg program is able to supply data (simulated events) to the dual channel
D-RORC card, which acts as data generator for the DDL channels. The program
reads the fragments from data files, which need to be generated in advance. It can
handle up to 12 DDL channels per machine. Files cannot be shared between the
channels.

The program can also generate the Common Data Header (see Section 3.9). If this
header is enabled, then the event identifiers of all fragments will be synchronized.
Several replica of the ddg program can run parallel on the same or on different
machines. The CDH of the corresponding fragments (generated with different
program replica) remain synchronized.

Parameters and
switches:

• the parameter config_file defines the name of the configuration file, which
contains all the parameters describing the fragments to be generated by the
program (see Section 20.4.3). The default name is ddg.conf.

• the parameter log_file defines the name of log file. If not given, the
standard output (stdout) stream is used.

• the parameter physmem_minor defines the minor device number of the
physmem memory device. It can be 0 for /dev/physmem0 device, or 1 for
/dev/physmem1. The latter can be used only when DATE is not running in the
same RORC channel. The default physmem device is /dev/physmem0.

• the parameter SMI_object defines the associated SMI object in the form
<domain_name>::<object_name>. The default SMI object is DDG::DDG.

• the parameter time-out defines the waiting time in microseconds for the
DDL commands. The default value is 1000 microseconds.

• the switch -N or -n enforces that the fragments are not scattered in the
physmem memory. Only one buffer is used.

• the switch -v prints details for debugging (verbose mode). Note that the switch
-V is not implemented.

• the switch -H or -h prints a short help message.

20.4.2 Behavior of the DDG program

The ddg program works in the following way:
ALICE DAQ and ECS manual

DDL Data Generator (DDG) program 353
1. The program parses the configuration file. Then it initializes the physmem
memory, the DIM and the SMI packages. It sets the SMI state to “IDLE”, opens
the requested DDL channels, and reads the fragments from the data files into its
buffer. Alternatively it generates the fragments, if they are not read from a file.

2. The program waits for the RDYRX command from the DDL channels. It should
receive them only when the DATE system at the receiving side has been started
and is ready to receive data. If configured, the program resets the specified
channels.

3. The program starts sending data upon reception of the SMI command
“START”. It sets the SMI state to “RUNNING”.

4. While sending data the program pushes the fragment parameters (buffer’s
physical address and length) into the RORC. It checks the status of the
ROROC’s FIFOs. When a fragment is transmitted, the program reads the next
from file to the memory buffer and pushes the fragment’s parameters into the
RORC.

5. After receiving the SMI command “STOP”, the program stops sending data and
terminates.

20.4.3 Syntax of the DDG configuration file

Any number of empty lines is allowed. Lines starting with a ‘#’, ‘*’ or ‘;’ character
are considered as comment. After the character ‘;’ or ‘//’ the remaining part of any
line is considered as in-line comment.

Each keyword must be written in a separate line. The keywords and their (optional)
parameters can be separated by space(s), tabulator(s) or equal sign(s). The use of
the keywords is not mandatory. Each keyword has a default value, which is used
when the keyword is not specified in the DDG configuration file. The configuration
file may even be empty, and in this case all the default values are used. If the same
keyword occurs more than once in the configuration file, then the last value is used.
This rule applies also for conflicting keywords.

20.4.3.1 Channel independent keywords

The following DDG configuration file keywords do not depend on the D-RORC
channel.

PHYSMEM_OFFSET

Synopsis PHYSMEM_OFFSET [<memory_offset>]

Description The parameter memory_offset defines the offset of memory in MB requested
from the /dev/physmem0 device relative to its base address.The default offset is 0.
ALICE DAQ and ECS manual

354 DDL and D-RORC stand-alone software
�

PHYSMEM_LENGTH

Synopsis PHYSMEM_LENGTH [<useable_memory>]

Description The parameter usable memory defines the amount of memory in MB requested
from the /dev/physmem0 device. The default amount is 32 MB.

DDL_COMMANDS

Synopsis DDL_COMMANDS

Description Wait for the RDYRX commands before sending data.

NO_DDL_COMMANDS

Synopsis NO_DDL_COMMANDS

Description Do not wait for the RDYRX commands before sending data. If neither the keyword
DDL_COMMANDS nor the keyword NO_DDL_COMMANDS is present, then the
configuration is done with the keyword NO_DDL_COMMANDS.

HEADER

Synopsis HEADER

Description Generate the Common Data Header (CDH) for each fragment. The configuration of
the CDH is specified with a set of DDG keywords (see Section 20.4.3.3).

NOHEADER

Synopsis NOHEADER

Description Do not generate the Common Data Header (CDH) for the fragments. If neither the
keyword HEADER nor the keyword NOHEADER is present, then the
configuration is done with the keyword NOHEADER.

BUNCH_CROSSING_START

Synopsis BUNCH_CROSSING_START <start_value>
ALICE DAQ and ECS manual

DDL Data Generator (DDG) program 355
Description The parameter start_value is used to calculate the starting value for the
orbit_number (24 bits) and the bunch_crossing_number (12 bits) for the CDH
of the first fragment for all channels:

• orbit_number_first = start_value / 3564

• bunch_crossing_number_first = start_value % 3564

If not present, the parameter start_value is 1.

BUNCH_CROSSING_INCREMENT

Synopsis BUNCH_CROSSING_INCREMENT <min_value> <max_value>

Description The parameters min_value and max_value are used to calculate the range of
the increment values for the bunch_crossing_number:

• bc_min_increment = 2^min_value - 1

• bc_max_increment = 2^max_value - 1

The range for these parameters is between 0 and 31. If not present, the value for the
parameter min value is 0, and the value for the parameter max value is 20.

BUNCH_CROSSING_SEED

Synopsis BUNCH_CROSSING_SEED <seed_value>

Description The parameter seed_value is used to initialize the random number generator
RANDOM for the calculation of the bunch_crossing_number and
orbit_number for the CDH of the fragments (except the first one) for all channels:

• bc_increment = RANDOM (bc_min_increment, bc_max_increment)

• bunch_crossing += (bc_increment % 3564)

• orbit_number += (bc_increment / 3564)

• if (bunch_crossing >= 3564)
{
 orbit_number++
 bunch_crossing %= 3564
}

If not present, the value for the parameter seed value is 1.

MAX_EVENT

Synopsis MAX_EVENT <max_event_number>
ALICE DAQ and ECS manual

356 DDL and D-RORC stand-alone software
�

Description The parameter max_event_number defines the maximum number of fragments
per channel to be generated. No limitation is given when 0 is used, hence the DDG
program terminates when the SMI command “STOP” is received. If not present, the
value for the parameter max_event_number is 0.

20.4.3.2 Channel dependent keywords

The following DDG configuration file keywords depend on the D-RORC channel.
The group of keywords that characterize one channel is introduced by the keyword
RORC_CHANNEL.

RORC_CHANNEL

Synopsis RORC_CHANNEL <minor> <channel>

Description The parameter minor defines the minor device number of the RORC in case there
are several cards. The default minor device number is 0. The parameter channel
chooses the channel (0 or 1) of a dual channel D-RORC. The default channel is 0.

DATA_FILE

Synopsis DATA_FILE <file name>

Description The parameter file name defines the DDG data file (see Section 20.4.4). If this
keyword is given, the data words of the generated fragments are supplied from this
file.

DATA_PATTERN

Synopsis DATA_PATTERN <pattern>

Description The parameter pattern sets the data pattern for the generated fragments. The
accepted characters of this parameter are the following:
- ‘c’: constant data pattern.
- ‘a’: alternating data pattern.
- ‘0’: flying 0 data pattern.
- ‘1’: flying 1data pattern.
- ‘i’: incremental data pattern.
- ‘d’: decremental data pattern.
The default data pattern is ‘i’. If both keywords DATA_FILE or DATA_PATTERN
are present, the later one is used. If neither is present, then the configuration is done
with the keyword DATA_PATTERN.
ALICE DAQ and ECS manual

DDL Data Generator (DDG) program 357
INIT_WORD

Synopsis INIT_WORD <start value>

Description The parameter start value in hexadecimal format sets the second data word of
each generated fragment when the keyword DATA_PATTERN is present. The
default value depends on the selected pattern:
- 0xfffffffe: if the pattern is ‘d’.
- 0x00000001: if the pattern is ‘i’.
- 0x0: for the other patterns.
The first word of each generated fragment is an incrementing counter value
starting from 1.

DATA_LENGTH

Synopsis DATA_LENGTH <maximum length>

Description The parameter maximum length defines the length in words (4 bytes) of the
largest generated fragment when the keyword DATA_PATTERN is present. The
range for this parameter is between 1 and 2^24-1. If not present, the value is 2^19-1
= 524287.

RANDOM

Synopsis RANDOM

Description Generate fragments with random length. Their minimal length is 0, and their
maximum length is given either by the parameter of the keyword DATA_LENGTH
or by the specified length of the fragments in a DDG data file (see Section 20.4.4).

NORANDOM

Synopsis NORANDOM

Description Generate fragments with constant length. If neither the keyword RANDOM nor the
keyword NORANDOM is present, then the configuration is done with the
keyword RANDOM.

RESET

Synopsis RESET
ALICE DAQ and ECS manual

358 DDL and D-RORC stand-alone software
�

Description Reset the DDL channel before generating fragments.

NORESET

Synopsis NORESET

Description Do not reset the DDL channel before generating fragments. If neither the keyword
RESET nor the keyword NORESET is present, then the configuration is done with
the keyword RESET.

20.4.3.3 Common data header keywords

The following DDG configuration file keywords control the generation of the
Command Data Header (CDH) when the keyword HEADER is present.

BLOCK_LENGTH

Synopsis BLOCK_LENGTH

Description Fill the “block length” field in the CDH with the length for each generated
fragment.

NO_BLOCK_LENGTH

Synopsis NO_BLOCK_LENGTH

Description Fill the “block length” field in the CDH with the value 0xffffffff for each
generated fragment. If neither the keyword BLOCK_LENGTH nor the keyword
NO_BLOCK_LENGTH is present, then the configuration is done with the keyword
BLOCKLENGTH.

MINI_EVENT_ID

Synopsis MINI_EVENT_ID

Description Fill the “mini-event ID” field in the CDH with the bunch crossing number for
each generated fragment.

NO_MINI_EVENT_ID

Synopsis NO_MINI_EVENT_ID
ALICE DAQ and ECS manual

DDL Data Generator (DDG) program 359
Description Fill the “mini-event ID” field in the CDH with the bunch crossing number
with some random errors for each generated fragment. If neither the keyword
MINI_EVENT_ID nor the keyword NO_MINI_EVENT_ID is present, then the
configuration is done with the keyword MINI_EVENT_ID.

FORMAT_VERSION

Synopsis FORMAT_VERSION <version>

Description Fill the “format version” field in the CDH for each generated fragment with the
parameter version. It is a hexadecimal number (8 bits). If not present, the version
number 1 is used.

L1_TRIGGER

Synopsis L1_TRIGGER <L1 trigger message>

Description Fill the “L1 trigger message” field in the CDH for each generated fragment with the
parameter L1 trigger message. It is a hexadecimal number (10 bits). If not
present, the message is 0.

SUB_DETECTORS

Synopsis SUB_DETECTORS <participating sub-detectors>

Description Fill the “participating sub-detectors” field in the CDH for each generated fragment
with the parameter participating sub-detectors. It is a hexadecimal
number (24 bits). If not present, the value is 0.

ATTRIBUTES

Synopsis ATTRIBUTES <block attributes>

Description Fill the “block attributes” field in the CDH for each generated fragment with the
parameter block attributes. It is a hexadecimal number (8 bits). If not present,
the value is 0.

STATUS_BITS

Synopsis STATUS_BITS <status and error bits>
ALICE DAQ and ECS manual

360 DDL and D-RORC stand-alone software
�

Description Fill the “status and error bits” field in the CDH for each generated fragment with
the parameter status and error bits. It is a hexadecimal number (8 bits). If
not present, the value is 0.

TRIGGER_CLASS_LOW

Synopsis TRIGGER_CLASS_LOW <trigger class low bits>

Description Fill the “trigger class low” field (bits 1-31 of the trigger class information) in the
CDH for each generated fragment with the parameter trigger class low
bits. It is a hexadecimal number (32 bits). If not present, the value is 0.

TRIGGER_CLASS_HIGH

Synopsis TRIGGER_CLASS_HIGH <trigger class high bits>

Description Fill the “trigger class high” field (bits 32-49 of the trigger class information) in the
CDH for each generated fragment with the parameter trigger class high
bits. It is a hexadecimal number (18 bits). If not present, the value is 0.

ROI_LOW

Synopsis ROI_LOW <ROI low bits>

Description Fill the “ROI low” field (bits 0-3 of the region of interest information) in the CDH
for each generated fragment with the parameter ROI low bits. It is a
hexadecimal number (4 bits). If not present, the value is 0.

ROI_HIGH

Synopsis ROI_HIGH <ROI high bits>

Description Fill the “ROI high” field (bits 4-35 of the region of interest information) in the CDH
for each generated fragment with the parameter ROI high bits. It is a
hexadecimal number (32 bits). If not present, the value is 0.

20.4.3.4 Example of a DDG configuration file

Listing 20.4 shows a DDG configuration file for used to generate fragments on
channel 0 on a dual channel D-RORC with minor device number 1 (line 46). The
physmem memory is utilized between its base address and 10 MB (lines 37-38). The
generated fragments have an incremental data pattern of 1500 words of random
length (lines 47-49). A fixed length can be easily achieved, e.g. by removing the
ALICE DAQ and ECS manual

Stand-alone installation 361
commenting semicolon (line 49). The CDH is part of the generated fragments (line
40) with a starting bunch crossing number of 1 (line 41) and a fixed increment of
2^10-1 for the bunch crossing and hence orbit number (line 42). The “mini-event
ID” field is also set (line 51), but not the “block length” field (line 50). There is no
limit on the number of fragments to be generated (line 43). The DDG program starts
sending data only after receiving the RDYRD command (line 39).

20.4.4 Syntax of the DDG data files

Any number of empty lines is allowed. Lines starting with a ‘#’, ‘*’ or ‘;’ character
are considered as comment. After the character ‘;’ or ‘//’ the remaining part of any
line is considered as in-line comment.

The structure of the data files is as follows:

1. Put the maximum fragment size in words (4 bytes) in a separate line. It is a
decimal number, which must be greater than 0 and less than 2^24-1 = 1677215.

2. Put the fragment size in words (4 bytes) of the first fragment in a separate line.
It is a hexadecimal number, which must be greater or equal than 0 and less than
224 -1 = 0xffffff.

3. Put the data words of the first fragment. They can be separated by space(s),
tabulator(s) or new line character(s).

4. Continue with the following fragments as described in point 2. and 3.

20.5 Stand-alone installation

The DDL and RORC library and test programs are installed together with the
DATE kit. For a stand-alone installation, follow the procedure below:

• The header, source, object and executable files of the RORC and DDL test
programs and library are in the common AFS area:

/afs/cern.ch/alice/daq/ddl/rorc/

Listing 20.4 Example of a DDG configuration file

35: # DDG configuration file
36:
37: PHYSMEM_OFFEST 0
38: PHYSMEM_LENGTH 10
39: DDL_COMMANDS
40: HEADER
41: BUCH_CROSSING_START 1
42: BUNCH_CROSSING_INCREMENT 10 10
43: MAX_EVENT 0
44:
45: # DDG pcddl01ldc 405 channel 0
46: RORC_CHANNEL 1 0
47: DATA_PATTERN d
48: DATA_LENGTH 1500
49: ;NORANDOM
50: NO_BLOCK_LENGTH
51: MINI_EVENT_ID
ALICE DAQ and ECS manual

362 DDL and D-RORC stand-alone software
�

This directory contains the different versions of the software as separate
sub-directories. It also contains the different versions in compressed formats.

• The compressed file names show the version number and the time of archiving.
Always use the latest date of a given version. The latest distributed version can
be found on the following Web page:
http://cern.ch/ddl/rorc_support.html

• Copy the compressed file on a local directory and uncompress it. Use the
following command for extracting the files:
gtar -xvzf rorc_vers.x.y.z_year.month.day.tgz rorc/

• All test programs use physmem, which needs be previously installed on the
machine (see Chapter 15).

• To do the compilation, type the following commands:
cd rorc
make -f Makefile clean
make -f Makefile

• To compile the driver type
make -f Makefile driver

• To create the device files, and prepare the driver to be loaded at boot time type
as root the following commands
make -f Makefile dev

• To load the rorc_driver kernel module without booting type as root:
make -f Makefile load

• In case an older version of the rorc_driver is already loaded, then type as
root:
make -f Makefile reload

• To check if RORC card is plugged and the driver is loaded type
./check_driver.
This script shows if the RORC card is plugged (calling /sbin/lspci), if the
driver is loaded (calling /sbin/lsmod) and the driver messages during load
time (calling dmesg).
ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
21
RORC
Application
Library

This chapter describes the API library that allows to develop programs using the
RORC device in a stand-alone manner.

21.1 Introduction. 364

21.2 Header files . 364

21.3 The rorc_driver . 364

21.4 Description of the routines and functions 365

21.5 Installation . 389

364 RORC Application Library
�

21.1 Introduction

The DATE kit provides the readout software to perform long-term high-volume
data taking with several RORC devices in a LDC (see Chapter 6 and Chapter 7).
Some software is also provided to use the RORC device in a stand-alone manner
(see Chapter 20), useful to facilitate the installation procedure, to help debugging
and to use the features of the RORC as a test device for DATE. However, if someone
wants to develop his own special program to exploit the capabilities of the RORC
device then an application library (written in C) provided with the DATE kit can be
used. This chapter provides a description of the most important routines of this
library.

21.2 Header files

Before calling any of the following routines, the user must include a header file:

#include “rorc_ddl.h”

This file contains the necessary definitions for the use of the DDL. It has a reference
to another header file, which contains the definitions of the RORC cards:

#include “rorc_lib.h”

The header files contain the type definition of the structures referred to in further
descriptions. In addition, they contain the definition of the macros described later
on.

21.3 The rorc_driver

The programs and routines described in this documents work under the LINUX
operating system. Currently we have a RORC driver for CERN Scientific LINUX
version 4 (SLC4, kernel version 2.6.9) and SLC5 (kernel version 2.6.18). Before using
the described routines and programs, the RORC driver must be loaded (see
Section 21.5 for details).
ALICE DAQ and ECS manual

Description of the routines and functions 365
21.4 Description of the routines and functions

rorcFindAll

Synopsis #include <rorc_lib.h>

int rorcFindAll(rorcHwSerial_t *hw,

rorcHwSerial_t *diu_hw,

rorcChannelId_t *channel,

int *rorc_revision,

int *diu_vers,

int max_dev)

Description Find all RORC channels not in use. The rorcFindAll() routine returns the
version, serial, revision, minor and channel numbers of all RORC cards plugged in
the PC together with the same information regarding the plugged in or embedded
DIUs. The routine tries to open all RORC devices and reads the hardware version
and serial numbers from their configuration EPROM. It also sends a DDL
command to the DIU to find out the DIU version and serial number.

The routine needs to open the RORC channel to read the above data. If the RORC
channel is used by some other program then it cannot be opened and it will be not
included into the list of “RORC channels found”. To get the list of all RORC
devices, independently of its occupancy, use rorcQuickFind().

Parameters hw pointer to an array of rorcHwSerial_t type structures. The
routine loads into these structures the version and serial
numbers of RORC cards found. rorcHwSerial_t is defined
in the header file rorc_lib.h. Besides the major and minor
version and the serial numbers it contains the full string
found in the configuration EPROM of the RORC card. If
there is no information in the EPROM about the hardware
version and serial numbers, then the routine puts –1 into the
structure as version and serial numbers.

diu_hw pointer to an array of rorcHwSerial_t type structures. The
routine loads into these structures the version and serial
numbers of the DIU card found. If no DIU is plugged or there
is no information in the DIU’s EPROM about the hardware
version and serial numbers, then the routine puts –1 into the
structure as version and serial numbers.

channel pointer to an array of rorcChannel_t structures. Here the
routine supplies the corresponding minor device numbers of
the RORC cards and the channel numbers of the DIUs.

rorc_revision pointer to an array of integers. Here the routine supplies the
corresponding device revision numbers (1 for pRORC, 2 for
D-RORC with connector for DIU. 3 for D-RORC with
ALICE DAQ and ECS manual

366 RORC Application Library
�

embedded DIUs, 4 for version 2 D-RORC and 5 for PCI
express RORC) of the RORC cards.

diu_vers pointer to an array of integers. Here the routine supplies the
corresponding DIU version number (0 if no DIU, 1 if proto-
type DIU, 2 if final DIU plugged in version, and 3 if embed-
ded DIU) of the DIU on the corresponding DDL channel.

max_dev the size of hw, diu_hw, channel, rorc_revision and
diu_vers arrays.

Return value number of DDL channels (not in use) found or 0.

See also rorcFind(), rorcQuickFind(), rorcSerial(),
rorcOpenChannel()

rorcQuickFind

Synopsis #include <rorc_lib.h>

int rorcQuickFind (int *rorc_minor,

int *rorc_revision,

unsigned long *com_stat,

int *pci_speed,

int *rorc_serial,

int *rorc_fw_maj,

int *rorc_fw_min,

int *max_chan,

int *ch_pid0,

int *ch_pid1,

int max_dev)

Description Find all RORC cards. The rorcQuickFind() routine returns the minor number,
revision number, PCI command/status information, PCI speed, hardware serial
number, firmware version major and minor numbers and the IDs of processes
using RORC channels for all RORC cards plugged in the PC. The routine gets this
information from the /proc/rorc_map process file. The file is filled by the RORC
driver using (except the process IDs) the data established at the boot time.

Parameters rorc_minor pointer to an integer array containing the
corresponding minor device numbers of the RORC
cards.

rorc_revision pointer to an array of integers. Here the routine
supplies the corresponding device revision number (1
for pRORC, 2 for D-RORC with connector for DIU, 3
for D-RORC with embedded DIUs, 4 for version 2
ALICE DAQ and ECS manual

Description of the routines and functions 367
D-RORC and 5 for PCI express RORC) of the RORC
cards.

com_stat pointer to an array of unsigned long integers. Here the
routine copies the value found in the device’s
command/status register. This value reflects the PCI
settings of the given slot. The settings are correct if the
value is
0x04300107 for revision 2 or 3 cards,
0x04100107 for revision 4 cards, and
0x00100007 for revision 5 cards.

pci_speed pointer to an array of integers. Here the routine
supplies the speed settings of the cards. It could be 33,
66, 100 and 133 Hz. Note, the PCI-X type RORC card
cannot work on 133 Hz.

rorc_serial pointer to an array of integers. Here the routine loads
the hardware serial number of RORC cards found.

rorc_fw_maj pointer to an array of integers. The routine interprets
the device firmware version number and loads here
the major part. E.g. for firmware ID 2.12 this value is 2.

rorc_fw_min pointer to an array of integers. The routine interprets
the device firmware version number and loads here
the minor part. E.g. for firmware ID 2.12 this value is
12.

max_chan pointer to an array of integers. Here the routine
supplies the number of channels (DIUs) of the given
RORC cards.

ch_pid0 pointer to an array of integers. Here the routine
supplies the ID of the process currently using channel
0 of the given RORC cards or 0 if the channel is not in
use.

ch_pid1 pointer to an array of integers. Here the routine
supplies the ID of the process currently using channel
1 of the given RORC cards or 0 if the channel is not in
use.

max_dev the size of rorc_minor, rorc_revision,
com_stat, pci_speed, rorc_serial,
rorc_fw_maj, rorc_fw_min, max_chan,

ch_pid0, and ch_pid1 arrays.

Return value number of DDL cards found on PCI bus or
-1 if /proc/rorc_map cannot be open.

See also rorcFind(), rorcFindAll(), rorcSerial(), rorcOpenChannel()

rorcFind

Synopsis #include <rorc_lib.h>
ALICE DAQ and ECS manual

368 RORC Application Library
�

int rorcFind(int revision, int serial, int *minor)

Description Find the specified RORC card. The rorcFind() routine returns the minor
number of a RORC card with the specified revision and serial numbers. The minor
number is necessary to open a DDL channel with the rorcMapChannel() or
rorcOpenChannel() routines. At boot time the rorc_driver module matches
the revision and serial numbers with the minor numbers and puts this info into the
/proc/rorc_map process file. The rorcFind() routine reads this file and finds
the given minor number. If the /proc/rorc_map file does not exist (it can happen
if an older rorc_driver module is loaded, which does not create this file) then
rorcFind() tries to open all the RORC devices plugged in the PC and reads the
revision number from their PCI configuration space and the hardware serial
number from their configuration EPROM.

If several cards have the same specified revision and serial numbers, then the
routine returns the first one.

Parameters revision device revision number (1 for pRORC, 2 for D-RORC
with connector for DIU, 3 for D-RORC with embedded
DIUs, 4 for version 2 D-RORC and 5 for PCI express
RORC cards) of the RORC card to be found.

serial the serial number (a 5 digit decimal number) of the
RORC card to be found.

minor pointer to an integer where the minor number of the
specified card has to be returned.

Return value RORC_STATUS_OK = 0 the specified RORC was found. minor points to
the minor number of the specified card.

RORC_STATUS_ERROR = -1 the specified RORC was not found, such a card
is not plugged.

See also rorcFindAll(), rorcSerial(), rorcMapChannel(),
rorcOpenChannel()

rorcOpenChannel

Synopsis #include <rorc_lib.h>

int rorcOpenChannel (rorcHandle_t handle,

int rorc_minor,

int rorc_channel)

Description Arm and reset the DDL channel. The rorcOpenChannel() routine should be
called for every DDL channel at the start of a run. The routine checks the existence
of the RORC channel. If it finds the channel, it opens it and fills a descriptor. The
descriptor address can be used as a handle for every further use of the given
channel. The rorcOpenChannel() routine resets the RORC device and sends a
command the DIU to find out whether there is any DIU plugged and if so, what is
the given DIU version (prototype or final). The above information is written into
ALICE DAQ and ECS manual

Description of the routines and functions 369
the handle structure. If one does not want the RORC to be reset, use the
rorcMapChannel() routine instead.

Parameters handle address of a RORC descriptor structure. The

rorcHandle_t type is a pointer to a
rorcDescriptor_t structure, which contains all
information about the PCI-based RORC. The structure
type is defined in the rorc_lib.h file. The caller,
before calling the rorcOpenChannel() routine, has
to allocate a descriptor and supply its address to the
routine. The routine fills the structure with data
necessary for further calls.

rorc_minor device file minor number of the RORC card. Multiple
RORC cards can be supported (with device file names
“/dev/prorcN”, where N is the minor number). The
minor numbers start from 0.

rorc_channel RORC channel number (0 or 1). For pRORCs or D-RORCs
without embedded DIUs only channel 0 can be used.

Return value RORC_STATUS_OK = 0 no error, channel initialized and handle points to a
valid RORC descriptor.

RORC_STATUS_ERROR = -1 the RORC channel couldn’t be opened. Either no
card was found or another process uses it or its PCI
memory cannot be mapped.

See also rorcMapChannel(), rorcClose()

rorcMapChannel

Synopsis #include <rorc_lib.h

int rorcMapChannel (rorcHandle_t handle,

int rorc_minor,

int rorc_channel)

Description Arm the RORC card. The rorcMapChannel() routine can be called instead of
rorcOpenChannel() routine when one does not want to reset the open device. It
should be called for every DDL channel at the start of a run. The routine checks the
existence of the RORC channel. If it finds the channel, it opens it and fills a
descriptor. The descriptor address can be used as a handle for further use of the
given channel. The routine does not initialize the RORC card and does not send any
command via the DDL channel.

To initialize the DDL components (reset RORC, DIU, SIU and establish the DDL
link) use the routines rorcReset() or rorcArmDDL().

Parameters handle address of a RORC descriptor structure. The
rorcHandle_t type is a pointer to a
ALICE DAQ and ECS manual

370 RORC Application Library
�

rorcDescriptor_t structure, which contains all
information about the PCI-based RORC. The structure type
is defined in the rorc_lib.h header file. The caller,
before calling the rorcMapChannel() routine, has to
allocate a descriptor and supply its address to the routine.
The routine fills the structure with data necessary for further
calls.

rorc _minor device file minor number of the RORC card. Multiple
RORC cards can be supported (with device file names
“/dev/prorcN”, where N is the minor number). The minor
numbers start from 0.

rorc_channel RORC channel number (0 or 1). For pRORCs or
D-RORCs without embedded DIUs only channel 0 can
be used.

Return value RORC_STATUS_OK = 0 no error, channel initialized and handle points
to a valid RORC descriptor.

RORC_STATUS_ERROR = -1 the RORC channel couldn’t be opened. Either no
card was found or another process uses it or its
PCI memory cannot be mapped.

See also rorcOpenChannel(), rorcReset(), rorcArmDDL(), rorcClose()

rorcClose

Synopsis #include <rorc_lib.h>

int rorcClose(rorcHandle_t handle)

Description Close the RORC channel. The rorcClose() routine should be called for every
DDL channel at the end of a run. The routine closes all resources set up by a
previous call of the routines rorcOpenChannel() or rorcMapChannel().

Parameters handle address of the RORC descriptor. When the routine
returns the handle, it will point to an invalid
descriptor.

Return value RORC_STATUS_OK = 0 no error, channel closed
RORC_STATUS_ERROR = -1 the RORC channel couldn’t be closed properly.

See also rorcOpenChannel(), rorcMapChannel()

rorcReset

Synopsis #include <rorc_lib.h>

void rorcReset(rorcHandle_t handle,
ALICE DAQ and ECS manual

Description of the routines and functions 371
int option)

Description Reset the RORC channel. The rorcReset() routine initializes the RORC card
and/or a DDL channel. According to the user request the routine resets the Free
FIFO, the other parts of the RORC, the DIU or the SIU. Resetting the RORC channel
means to empty all its FIFOs, including the Free FIFO and error bits, and then
putting all programmable features to their reset values. Resetting the DIU or the
SIU means cutting the DDL link; afterwards the DDL link rebuilds itself.

Parameters handle address of the RORC descriptor.
option the following values can be used:

RORC_RESET_FF clear Rx and Tx Free FIFOs
RORC_RESET_FIFOS clear RORC’s other FIFOs
RORC_RESET_ERROR clear RORC's error bits
RORC_RESET_COUNTERS clear RORC’s byte counters
RORC_RESET_RORC reset RORC
RORC_RESET_DIU reset DIU
RORC_RESET_SIU reset SIU
0 reset RORC

See also rorcOpenChannel(), rorcMapChannel(), rorc_reset

rorcEmptyDataFifos

Synopsis #include <rorc_lib.h>

void rorcEmptyDataFifos(rorcHandle_t handle,

int timeout)

Description Try to empty all data FIFOs of the RORC channel.The rorcEmptyDataFifos()
routine tries to empty the RORC card’s receive (Rx) and transmit (Tx) data FIFOs
by continuously sending the ‘clear RORC FIFOs’ command and checking Rx FIFO
status. It is not enough to send the command only once, because new data can
arrive from the - not empty - FIFOs of the FEE, SIU or DIU. The routine returns if
the RORC’s Rx FIFO is empty or the time-out has expired.

Parameters handle address of the RORC descriptor.
timeout time-out value in secs.

Return value RORC_STATUS_OK = 0 no error, data FIFOs emptied.

RORC_TIMEOUT TIMEOUT = -64 there are still data in RORC’s Rx FIFO
after timeout.

See also rorcReset(), rorcArmDDL()
ALICE DAQ and ECS manual

372 RORC Application Library
�

rorcArmDataGenerator

Synopsis #include <rorc_lib.h>

int rorcArmDataGenerator(rorcHandle_t handle,

__u32 initEventNumber,

__u32 initDataWord,

int dataPattern,

int eventLen,

int seed,

int *rounded_length)

Description Initialize RORC’s Data generator. The rorcArmDataGenerator() routine
should be called for every DDL channel where the RORC card will be used as data
generator. The routine can be called after the call of rorcOpenChannel() and
before the call of rorcStartDataGenerator() routines. It defines all the
parameters needed for data generation. If rorcStartDataGenerator() is called
without calling rorcArmDataGenerator(), then the data generator will use
unpredictable values.

Parameters handle address of the RORC descriptor.
initEventNumber each event starts with the serial number of the given

event (event count). This parameter defines the
starting value of it.

initDataWord the first data word of the event (after the event count).
It is used only for some of the test patterns. Note: for
D-RORC, if the seed is not
RORC_DG_NO_RANDOM_LEN, the first data word of
each event is 0.

dataPattern an integer between 1 and 7:
RORC_DG_CONST: all data words are initDataWord.

RORC_DG_ALTER: alternating pattern, starting from initDataWord

RORC_DG_FLY0: flying 0 starting from 0xfffffffe

RORC_DG_FLY1: flying 1 starting from 0x00000001

RORC_DG_INCR: incrementing data starting from initDataWord

RORC_DG_DECR: decrement data starting form initDataWord
RORC_DG_RANDOM: random data

eventLen length (from 1 to 2^19-1) of the generated events in 32
bit words, including the event count. Important:
because of the special features of the random number
generation, if random length is used (seed is not equal
to RORC_DG_NO_RANDOM_LEN), the minimum
generated event length is 1, and the maximum value of
the length will be eventLen rounded down to the
nearest integer of power of 2.

seed defines the seed value for random data length. If given,
the event lengths will vary between 1 and eventLen.
ALICE DAQ and ECS manual

Description of the routines and functions 373
Using the value RORC_DG_NO_RANDOM_LEN no
random length will be generated.

rounded_length it is an output parameter: in case of random length
generation the maximum event length is rounded to
the nearest integer of power of two. The routine
transfers this value to RORC as the maximum length
and returns it to the user in this variable.

Return value RORC_STATUS_OK = 0 no error, data generator initialized

RORC_INVALID_PARAM = -2 error: some of the parameters out of range.

See also rorcOpenChannel(), rorcStartDataGenerator()

rorcArmDDL

Synopsis #include <rorc_ddl.h>

int rorcArmDDL(rorcHandle_t handle,

int options)

Description Arm the DDL. The rorcArmDDL() routine should be called for every DDL channel
when the RORC card is not used as data generator but data come from the
Front-end Electronics (FEE). The purpose of the routine is to establish or check the
connection between the DIU and SIU, to reset all components and to clear all data,
which could remain in the channel from previous use of the link. According to the
user request the routine resets the Free FIFO, the other parts of the RORC, the
DIU or the SIU units. If several reset requests are “OR-d”, the program first resets
the SIU, then establishes the link, then resets the DIU and at last resets the RORC.
Resetting the RORC card means emptying all its FIFOs, including the Free FIFO,
and then put all programmable features to their reset values. Resetting the DIU or
SIU means cutting the DDL link (if it was on before the call of the routine). In the
case of prototype version of the DDL cards, after the link cut, the link has to be
re-established by calling rorcArmDDL() with RORC_LINK_UP parameter. In
case of the final DDL cards, the link is set up automatically.

Parameters handle address of the RORC descriptor.
options the following values can be “OR-d”:
RORC_RESET_FF reset Free FIFO
RORC_RESET_RORC reset RORC
RORC_RESET_DIU reset DIU
RORC_RESET_SIU reset SIU
RORC_LINK_UP establish the DDL link

Return value RORC_STATUS_OK = 0 no error, requested task done.

RORC_LINK_NOT_ON = -4 link initialization did not succeed

RORC_CMD_NOT_ALLOWED =-8 routine called with not permitted option
ALICE DAQ and ECS manual

374 RORC Application Library
�

RORC_NOT_ACCEPTED = -16 unsuccessful SIU reset

See also rorcArmDataGenerator(), rorcReset(), rorcEmptyDataFifos()

rorcPushFreeFifo

Synopsis #include <rorc_lib.h>

void rorcPushFreeFifo(rorcHandle_t handle,

rorcMemAddres_t blockAddress,

__u32 blockLength,

int readyFifoIndex)

Description Push one entry into RORC’s Free FIFO. The rorcPushFreeFifo() is an in-line
function what should be called when the user has a free data page and wants to
load its parameters into the Free FIFO. It loads the parameters directly into the
RORC registers.

The function does not check the range of the parameters: it masks them for the
given range. It neither checks the Free FIFO status. If the Free FIFO is
overflowed then the new parameters will not be loaded. The caller can check this
situation using rorcCheckFreeFifo().

Parameters handle address of the RORC descriptor.
blockAddress physical address of the next free page in physmem

memory.
blockLength length of the next free page in byte (24 bit).
readyFifoIndex index of the ready FIFO, where the “data arrived” flag

has to be put to (8 bit).

See also rorcCheckFreeFifo()

rorcCheckFreeFifo

Synopsis #include <rorc_lib.h>

int rorcCheckFreeFifo(rorcHandle_t handle)

Description Return the status of the RORC’s Free FIFO. The rorcCheckFreeFifo() should
be called when the caller wants to know how many FIFO entries are in the Free
FIFO. Using pRORC device, it returns the number of entries in “8 entry” units (i.e.
0 means 1 to 8 entries, 1 means 9 to 16 entries, etc.). FIFO full and FIFO empty
statuses are signaled. In the case of D-RORC (RORC revision number > 1), the
routine only signals if the Free FIFO is not empty (returns not 0).

Parameters handle address of the RORC descriptor.
ALICE DAQ and ECS manual

Description of the routines and functions 375
Return value In case of pRORC:

a value between 1 and 15 specifying number of not empty Free FIFO entries in
the following way:

0 Between 1 and 8 words

1 Between 9 and 16 words

2 Between 17 and 24 words

3 Between 25 and 32words

……. ……….

13 Between 105 and 112 words

14 Between 113 and120 words

15 Between 121and 128 words

RORC_STATUS_OK = 0 Free FIFO is not empty (and not full).
RORC_FF_EMPTY = -256 Free FIFO is empty.

RORC_FF_FULL = -128 error: Free FIFO full.

In case of D-RORC:

0: Free FIFO is empty,

any other value: Free FIFO is not empty.

See also rorcPushFreeFifo()

Setting RORC parameters on/off

 The following 6 routines can be used to set RORC internal control parameters on or
off.

rorcLoopBackOn

Synopsis #include <rorc_lib.h>

int rorcLoopBackOn(rorcHandle_t handle)

Description The rorcLoopBackOn() routine should to be called when the user wants to set
the operational control parameter “Internal Loop-back” bit. If this control bit is on,
the data generated by the RORC’s Data Generator will be sent back to the RORC as
if it had arrived from the link.

 This conditions can be reset by the routine rorcLoopBackOff().

Parameters handle address of the RORC descriptor.
ALICE DAQ and ECS manual

376 RORC Application Library
�

Return value RORC_STATUS_OK = 0 no error

rorcLoopBackOff

Synopsis #include <rorc_lib.h>

int rorcLoopBackOff(rorcHandle_t handle)

Description The rorcLoopBackOff() routine should to be called when the user wants to
reset the operational control parameter “Internal Loop-back” bit

This condition is automatically set after RORC reset.

Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 no error

rorcHltSplitOn

Synopsis #include <rorc_lib.h>

int rorcHltSplitOn(rorcHandle_t handle)

Description The D-RORC card with 2 integrated DIU can be used in “split mode”. It means that
the data arriving on one channel can be transferred to the other channel. The
rorcHltSplitOn() routine should to be called when the user wants the given
channel to be used as output channel.

 This conditions can be reset by the routine rorcHltSplitOff().

Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 no error

RORC_CMD_NOT_ALLOWED = -8 the routine cannot be called for pRORCs or
D-RORCs without integrated DIU.

rorcHltSplitOff

Synopsis #include <rorc_lib.h>

int rorcHltSplitOff(rorcHandle_t handle)

Description The rorcHltSplitOff() routine should to be called when the user wants to
switch off the data sending for the given channel.

 This condition is automatically set after a RORC reset.
ALICE DAQ and ECS manual

Description of the routines and functions 377
Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 no error

RORC_CMD_NOT_ALLOWED = -8 the routine cannot be called for pRORCs or
D-RORCs without integrated DIU.

rorcHltFlctlOn

Synopsis #include <rorc_lib.h>

int rorcHltFlctlOn(rorcHandle_t handle)

Description The D-RORC card with 2 integrated DIU can be used in “split mode”. It means that
the data arriving on one channel can be transferred to the other channel. The
rorcHltFlctlOn() routine should to be called when the given channel is used as
the output channel (rorcHltSplitOn() is called or will be called) and the user
wants the flow control from the receiver side (probably the HLT farm) be taken into
account.

 This conditions can be reset by the routine rorcHltFlctlOff().

Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 no error

RORC_CMD_NOT_ALLOWED = -8 the routine cannot be called for pRORCs or
D-RORCs without integrated DIU.

rorcHltFlctlOff

Synopsis #include <rorc_lib.h>

int rorcHltFlctlOff(rorcHandle_t handle)

Description The rorcHltFlctlOff() routine should to be called when the given channel is
used as the output channel (rorcHltSplitOn() is called or will be called) and
the user wants the flow control from the receiver side (probably the HLT farm)
NOT be taken into account.

 This condition is automatically set after RORC reset.

Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 no error

RORC_CMD_NOT_ALLOWED = -8 the routine cannot be called for
pRORCs or D-RORCs without
integrated DIU.
ALICE DAQ and ECS manual

378 RORC Application Library
�

ddlSendCommandAndWaitReply

Synopsis #include <rorc_ddl.h>

int ddlSendCommandAndWaitReply(rorcHandle_t handle,

__u32 feeCommand,

__u32 feeAddress,

long long timeout,

stword_t *stw,

int expected,

int *n_reply)

Description Send a command and wait for the reply. The ddlSendCommandAndWaitReply()
routine should to be called when the user wants to send a command to the FEE via
the DDL channel. The routine returns the received replies.

Parameters handle address of the RORC descriptor.
feeCommand a maximum 4-bit long value which will be sent to the

FEE as a part the command. The following FEE
commands are allowed:

RDYRX = 1 Ready to Receive
EOBTR = 11 End of Block Transfer
STBWR = 13 Start of Block Write
STBRD = 5 Start of Block Read
FECTRL = 12 Front-end control
FESTRD =4 Front-end status readout

feeAddress a maximum 19-bit long value which will be sent to the
FEE as a part of the command.

timeout the number of waiting cycles for receiving the SIU
reply. If you want to specify the timeout value in
microseconds, then use the value
(<timeout in ms> * handle->loop_per_usec).

stw pointer to an array of status word structures where the
routine returns the received statuses.

expected number of expected reply words.
n_reply pointer to a variable where the routine returns the

number of received statuses.

Return value RORC_STATUS_OK = 0 no error, the command sent, the
expected number of reply words
received

RORC_LINK_NOT_ON = -4 error: the link is down

RORC_TIMEOUT = -64 error: command can not be sent in time
specified by timeout
ALICE DAQ and ECS manual

Description of the routines and functions 379
RORC_TOO_MANY_REPLY = -512 error: too many replies arrived or before
sending the command, the RORC’s
received FIFO contained already some
words from a previous command

RORC_NOT_ENOUGH_REPLY = -1024 error: less reply arrived then expected in
time specified by timeout

See also rorc_send_command

rorcStartDataGenerator

Synopsis #include <rorc_lib.h>

int rorcStartDataGenerator(rorcHandle_t handle,

__u32 maxLoop)

Description Set RORC to start sending generated data. The rorcStartDataGenerator()
routine should to be called when the user wants to receive generated data.
Normally the Data Generator sends the data to the DDL link. If the user wants the
simulated data to arrive in the PC, then the RORC has to be set to loop-back mode
before starting the Generator. This can be done by the routine
rorcLoopBackOn().

 Data will arrive only when data receiver is started by calling the
rorcStartDataReceiver() routine, and the RORC’s Free FIFO is not empty.
Features of the generated data (data pattern, event length, event frequency) can be
defined by a previous call to rorcArmDataGenerator(). To stop the data
generator (in the case of infinite number of events) call the routine
rorcStopDataGenerator().

Parameters handle address of the RORC descriptor.
maxLoop number of events to be generated. Possible values are

from 1 to 2^32-1, or RORC_DG_INFINIT_EVENT
(infinite number of events).

Return value RORC_STATUS_OK = 0 no error, data generator started

See also rorcArmDataGenerator(), rorcLoopBackOn(),
rorcStartDataReceiver(), rorcStopDataGenerator()

rorcStopDataGenerator

Synopsis #include <rorc_lib.h>

int rorcStopDataGenerator(rorcHandle_t handle)
ALICE DAQ and ECS manual

380 RORC Application Library
�

Description Stop sending generated data. The rorcStopDataGenerator() routine should to
be called when the user wants to stop receiving generated data. The data generator
stops sending events when the number of events set in
rorcStartDataGenerator() is reached. However
rorcDataStopGenerator() has to be called to set the RORC card into normal
state. If data sending is going on when this routine is called, then the current event
will be finished and no more data will be sent. If the transfer is stuck, one has to
reset the RORC card.

Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 no error, data generator stopped

See also rorcStartDataGenerator()

rorcStartDataReceiver

Synopsis #include <rorc_lib.h>

int rorcStartDataReceiver(rorcHandle_t handle,

unsigned long readyFifoBaseAddress)

Description Set the DDL channel to data collecting state. The rorcStartDataReceiver()
routine should to be called when the user wants to receive data via the DDL
channel.

Parameters handle address of the RORC descriptor.
readyFifoBaseAddress the physical memory address of the Ready FIFO.

It must be a multiple of 2K, i.e. the lower 11 bits of
the Ready FIFO address must be 0.

Return value RORC_STATUS_OK = 0 no error, data collection started.

See also rorcStopDataReceiver()

rorcStopDataReceiver

Synopsis #include <rorc_lib.h>

int rorcStopDataReceiver(rorcHandle_t handle)

Description Stop data collecting. The rorcStopDataReceiver() routine should to be called
when the user wants to stop receiving data via the DDL channel.

Parameters handle address of the RORC descriptor.
ALICE DAQ and ECS manual

Description of the routines and functions 381
Return value RORC_STATUS_OK = 0 no error, data collection stopped.

See also rorcStartDataReceiver()

ddlReadDataBlock

Synopsis #include <rorc_ddl.h>

int ddlReadDataBlock(rorcHandle_t handle,

unsigned long bufferPhysAddress,

unsigned long returnPhysAddress,

rorcReadyFifo_t *returnAddr,

__u32 feeAddress,

long long timeout,

stword_t *stw,

int *n_reply,

int *step)

Description Read a data block from the FEE. The ddlReadDataBlock() routine should to be
called when the user wants to read a data block from the FEE via the DDL channel.
The routine fulfils the following 3 steps:

1. Sends a Start Block Read (STBRD) command to the FEE, specifying the
front-end address where the data is.

2. Receives the data block.

3. Sends an End Of Block Transfer (EOBTR) command to the SIU.

If an error occurs in any of the above steps, the routine returns an error code, the
step number and the received reply from the FEE or SIU.

Parameters handle address of the RORC descriptor.
bufferPhysAddress the physical memory address of the data.
returnPhysAddress the physical memory address of a word where the

number of transferred word and a status word will be
put when the transfer had finished. When using
D-RORC the address must be 2K aligned, i.e. its lower
11 bits must be 0. The routine writes –1 this address
before sending the data and polls this address while
the transfer is done.

returnAddress a pointer to the virtual address of the above physical
memory.

feeAddress a maximum 19-bit long value which will be sent to the
FEE in the STBRD command.

timeout the number of waiting cycles for receiving the SIU
reply. If you want to specify the timeout value in
ALICE DAQ and ECS manual

382 RORC Application Library
�

microseconds, then use the value
(<timeout in ms> * handle->loop_per_usec)

stw pointer to an array of status word structures where the
routine returns the received status.

n_reply pointer to a variable where the routine returns the
number of received status.

step pointer to a variable where the routine returns the step
number at which the routine returned from.

Return value RORC_STATUS_OK = 0 no error

RORC_LINK_NOT_ON = -4 error: the link is down

RORC_TIMEOUT = -64 error: command can not be sent in time
timeout

RORC_TOO_MANY_REPLY = -512 error: too many replies arrived

RORC_NOT_ENOUGH_REPLY = -1024 error: less reply arrived then expected
in time timeout

See also ddlWriteDataBlock()

ddlWriteDataBlock

Synopsis #include <rorc_ddl.h>

int ddlWriteDataBlock(rorcHandle_t handle,

unsigned long bufferPhysAddress,

unsigned long bufferWordLength,

unsigned long returnPhysAddress,

volatile unsigned long *returnAddr,

__u32 feeAddress,

long long timeout,

stword_t *stw,

int *n_reply,

int *step)

Description Send a data block to the FEE. The ddlWriteDataBlock() routine should to be
called when the user wants to send a data block to the FEE via the DDL channel.
The routine fulfils the following 3 steps:

1. Sends a Start Block Write (STBWR) command to the FEE, specifying the
front-end address where the data has to be written.

2. Sends the data block.

3. Sends an End Of Block Transfer (EOBTR) command to the SIU.
ALICE DAQ and ECS manual

Description of the routines and functions 383
If an error occurs in any of the above steps, the routine returns an error code, step
number and the received reply from the FEE or SIU.

Parameters handle address of the RORC descriptor.
bufferPhysAddress the physical memory address of the data.
bufferWordLength the length of the data block in 32 bit words. The

maximum length is 512 K words – 1 word.
returnPhysAddress the physical memory address of a word where the

number of transferred word will be put when the
transfer had finished. When using D-RORC the
address must be 2K aligned, i.e. its lower 11 bits must
be 0. The routine writes –1at this address before
sending the data and polls this address while the
transfer is done.

returnAddress a pointer to the virtual address of the above physical
memory.

feeAddress a maximum 19-bit long value which will be sent to the
FEE in the STBWR command.

timeout the number of waiting cycles for receiving the SIU

reply. If you want to specify the timeout value in

microseconds, then use the value
(<timeout in ms> * handle->loop_per_usec)

stw pointer to an array of status word structures where the
routine returns the received status.

n_reply pointer to a variable where the routine returns the
number of received status.

step pointer to a variable where the routine returns the step
number at which the routine returned from.

Return value RORC_STATUS_OK = 0 no error

RORC_LINK_NOT_ON = -4 error: the link is down

RORC_TIMEOUT = -64 error: command can not be sent in time
timeout

RORC_NOT_ABLE = -32 error: the previous download was not
finished in time timeout

RORC_TOO_MANY_REPLY = -512 error: too many replies arrived

RORC_NOT_ENOUGH_REPLY = -1024 error: less reply arrived then expected
in time timeout

See also ddlReadDataBlock()

rorcStartTrigger

Synopsis #include <rorc_ddl.h>
ALICE DAQ and ECS manual

384 RORC Application Library
�

int rorcStartTrigger(rorcHandle_t handle,

long long timeout,

stword_t stword)

Description The rorcStartTrigger() routine sends a RDYRX command to the FEE.

Parameters handle address of the RORC descriptor
timeout the number of waiting cycles for receiving the FEE

reply. If you want to specify the timeout value in
microseconds, then use the value (
<timeout in ms> * handle->loop_per_usec)

stword the FEE reply: a DDL status word stword.stw

contains the full reply. For the details of a status word,
see the rorc_ddl.h.

Return value RORC_STATUS_OK = 0 the RDYRX command was sent successfully.

RORC_STATUS_ERROR = -1 the RORC was not able to send the command.

RORC_LINK_NOT_ON = -4 the link is down; the RORC is not able to send
the command.

RORC_NOT_ACCEPTED = -16 No reply arrived from SIU within the specified
timeout.

See also rorcStopTrigger()

rorcStopTrigger

Synopsis #include <rorc_ddl.h>

int rorcStopTrigger(rorcHandle_t handle,

long long timeout

stword_t stword)

Description The rorcStopTrigger() routine sends an EOBTR command to the FEE.

Parameters handle address of the RORC descriptor
timeout the number of waiting cycles for receiving the FEE

reply. If you want to specify the timeout value in
microseconds, then use the value
(<timeout in ms> * handle->loop_per_usec).

stword the FEE reply: a DDL status word stword.stw

contains the full reply. For the details of a status word,
see the rorc_ddl.h.

Return value RORC_STATUS_OK = 0 the EOBTR command was sent successfully.
ALICE DAQ and ECS manual

Description of the routines and functions 385
RORC_STATUS_ERROR = -1 the RORC was not able to send the command.

RORC_LINK_NOT_ON = -4 the link is down (the RORC is not able to send
the command).

RORC_NOT_ACCEPTED = -16 no reply arrived from SIU within the specified
timeout.

See also rorcStartTrigger()

rorcSerial

Synopsis #include <rorc_lib.h>

rorcHwSerial_t rorcSerial(rorcHandle_t handle)

Description Reads RORC’s version and serial numbers. The rorcSerial() routine reads
from the card’s configuration EPROM its hardware version and serial numbers.
The routine rorcInterpretSerial() interprets the relevant fields and print
them to standard output.

Parameters handle address of the RORC descriptor

Return value structure rorcHwSerial_t The routine loads into this structure the version
and serial numbers of the RORC card.
rorcHwSerial_t is defined in rorc_lib.h.
Besides the major and minor version and the
serial numbers it contains the full string
retrieved from the configuration EPROM of the
RORC card. If there is no information in the
EPROM about the hardware version and serial
numbers then the routine writes –1 into the
structure.

See also rorcFind(), rorcFindAll(), rorcReadFw(), ddlSerial()

rorcReadFw

Synopsis #include <rorc_lib.h>

int rorcReadFw(rorcHandle_t handle)

Description The rorcReadFw() function reads the RORC’s firmware identification word. The
routine rorcInterpretFw(fw) interprets the relevant fields and print them to
standard output. The inline function rorcFFSize(fw) returns the number of
Free FIFO entries of the card, while rorcFWVersMajor(fw) and
rorcFWVersMinor(fw) return the major and minor version numbers of the
card’s firmware.
ALICE DAQ and ECS manual

386 RORC Application Library
�

Parameters handle address of the RORC descriptor.

Return value The returned word contains the RORC’s firmware identification in the following
format:

bits 0-4: day

bits 5-8: month

bits 9-12: year form 2000

bits 13-24 version number of the pRORC card’s firmware

bits 25-31 Free FIFO size of the card in 64 units.

See also rorcSerial()

rorcReadRorcStatus

Synopsis #include <rorc_lib.h>

int rorcReadRorcStatus(rorcHandle_t handle,

rorcStatus_t *status)

Description The rorcReadRorcStatus() function fills a structure (defined in rorc_lib.h)
containing information about RORC status and errors, such as: the working mode
of the RORC, Free FIFO status, link status, flow control status, etc. Before calling
the rorcRorcReadStatus(), the caller has to allocate a rorcStatus_t
structure and supply its address to the routine. The routine fills this structure.

 The rorcStatus_t structure contains three members:

ccsr: the copy of the RORC’s Operation Control and Status Register,

cerr: the copy of the RORC’s Error Register,

cdgs: the copy of the RORC’s Data Generator Status Register.

The meaning of the status and error bits can be found in rorc_lib.h. The routines
rorcInterpretStatus(ccsr) and rorcInterpretError(cerr) interpret
the relevant register bits and print them to standard output.

Parameters handle address of the RORC descriptor.
status address of a rorcStatus_t type structure. The

routine fills into this structure the RORC status
information.

Return value RORC_STATUS_OK = 0 no error, RORC status structure filled
ALICE DAQ and ECS manual

Description of the routines and functions 387
ddlSerial

Synopsis #include <rorc_ddl.h>

rorcHwSerial_t ddlSerial(rorcHandle_t handle,

int destination,

long long timeout)

Description Read the version and serial numbers of the DIU or SIU card. Send command to the
DIU or SIU requesting the hardware version and serial numbers. The routine
works only for plugged DIU and DDL cards of the final version. The routine
rorcInterpreHwtSerial() interprets the relevant fields and prints them to
standard output.

Parameters handle address of the RORC descriptor
destination DIU or SIU
timeout the number of waiting cycles for receiving the DDL card’s

reply. If you want to specify the timeout value in
microseconds, then use (<timeout in s> *
handle->loop_per_usec).

Return value structure rorcHwSerial_t The routine loads into this structure the version
and serial numbers of the DDL (DIU or SIU) card.
rorcHwSerial_t is defined in rorc_lib.h.
Besides the major and minor version and the
serial numbers it contains the full string received
from the card. If there is no information received,
then the routine writes –1 into the structure (this
is the case for the prototype version DDL cards or
integrated DIUs).

See also rorcSerial()

rorcHasData

Synopsis #include <rorc_lib.h>

int rorcHasData(rorcReadyFifo_t readyFifoBaseAddr,

int readyFifoIndex)

Description Check the Ready FIFO for new data block. The calling program has to specify the
Ready FIFO base address and index. It polls the Ready FIFO entry and signals if
a data block arrived.

This routine is an in-line function. It does not return values from the Ready FIFO.
The caller can read the block length and the status from the FIFO.The routine only
ALICE DAQ and ECS manual

388 RORC Application Library
�

returns the information of block arrival. The memory address of the given block
(and the other blocks of the same event) has to be known by the caller.

Parameters readyFifoBaseAddr base address of the Ready FIFO

readyFifoIndex index of the Ready FIFO where the checking has to
be done

Return value RORC_DATA_BLOCK_NOT_ARRIVED = 0 no data block (data page) arrived
(Ready FIFO status = -1)

RORC_NOT_END_OF_EVENT_ARRIVED = 1 data block (data page) arrived
but not end-of-event block
(Ready FIFO status = 0)

RORC_LAST_BLOCK_OF_EVENT_ARRIVED= 2 end-of-event data block arrived
(Ready FIFO status = DTSTW).
If the continuation bit (bit 8) is
set, the event will continue.

rorcCheckLink

Synopsis #include <rorc_lib.h>

int rorcCheckLink(rorcHandle_t handle)

Description Check a status word of the RORC card which reflects the link status.

Parameters handle address of the RORC descriptor.

Return value RORC_STATUS_OK = 0 the DDL link is on

RORC_LINK_NOT_ON = -4 the DDL link is not on

See also rorcReadRorcStatus(), rorcArmDDL()
ALICE DAQ and ECS manual

Installation 389
21.5 Installation

The DDL-RORC Library and Test Programs are installed together with the DATE.
For a stand-alone installation, follow the given procedure below:

• The header, source, object and executable files of RORC and DDL test programs
and library are in a common afs
area:/afs/cern.ch/alice/daq/ddl/rorc/

• This directory contains the different versions of the software as separate sub
directories. These sub directories also contain the different versions in
compressed formats.

• The compressed file names show the version number and the time of archiving.
Use always the latest date of a given version. The latest distributed version can
be found in the DDL home page as well:
http://cern.ch/ddl/rorc_support.html.

• Copy the compressed file onto your area, uncompress it and extract all
directories and files from it. Use the following command for extracting files:

> gtar –xvzf rorc_vers.<x.y.z>_<year.month.day>.tgz

• You will get a directory structure with the following subdirectories:

rorc/ source, header and make files
rorc/Linux/ executables and compiled API libraries
rorc/examples/ programs showing the usage of API libraries
rorc/scripts/ some functional test scripts

• Some test programs use the physmem memory manager module (see
Chapter 15). If DATE is installed then physmem is installed as well. For a
stand-alone installation, one can find the package in the DDL home page at
http://cern.ch/ddl/rorc_support.html.

• To compile it type the following commands:

> cd rorc
> make -f Makefile clean
> make –f Makefile

• To compile the rorc_driver type:

 > make driver -f Makefile

• To register the driver and to create the device files type as root:

 > make dev -f Makefile

 The driver will be automatically loaded at boot time.

• If you want to load the rorc_driver kernel module without rebooting the
machine, type as root:

 > make load –f Makefile

• If an older version of the RORC driver is already loaded then run:
ALICE DAQ and ECS manual

390 RORC Application Library
�

 > make reload –f Makefile
ALICE DAQ and ECS manual

�

Part IV

Detector
Algorithms
Framework
December 2010

ALICE DAQ Project
DA
Framework

�

�

�

ALICE DAQ and ECS manual
22
Detector
Algorithms
Framework

The online calibration tasks for the detectors are implemented using the Detector
Algorithms (DA) Framework. The framework is available for download at:

http://cern.ch/alice-daq/DA-framework

This chapter describes the architecture and interfaces to implement Detector
Algorithms.

22.1 Introduction. 394

22.2 The Detector Algorithms (DAs) 395

22.3 DA framework architecture 395

22.4 DA framework implementation 397

394 Detector Algorithms Framework
�

22.1 Introduction

The ALICE sub-detectors require specific calibration tasks to be performed
regularly in order to achieve the most accurate physics measurements. These
systems are indeed sensitive to configuration settings, mechanical geometry,
environmental conditions changes, components aging and sensors defects. The
corresponding set of procedures to calibrate the sub-detectors involves events
analysis in a wide range of experimental conditions. These calibration tasks may be
done either in dedicated runs, or in parallel to physics data taking. Typical
examples of calibrations include pedestal and gain computation, dead and noisy
channels mapping, etc. Depending on the sub-detector and the calibration task, one
has to define in particular:

• The trigger type, which can be a normal physics trigger, or some specific events
related to dedicated hardware device (e.g. laser, LED, pulser).

• The number of events to collect, from a hundred events for pedestal runs to
millions of events for dead channel mapping.

• The event formatting, zero-suppressed or not, which impacts on the required
throughput. Event size ranges from sub-events of few kilobytes to 20 MB.

• The detector electronics settings, specific to the sub-detector operation mode.

• The calibration algorithm, i.e. the actual code to interpret the data and produce
results.

• The type of run, standalone or global, depending if the task can be performed
during normal data taking or requires a specific run. It has an impact on the
operation mode and detector dead-time for physics.

• The frequency at which the calibration is required, from few times per day to
once a year.

The calibration results produced may be needed to configure the detector
electronics for data taking, for example to produce zero-suppressed data or to mask
noisy channels, in order to reduce the data volume. Therefore, these results should
be available right after the calibration data-taking procedure, in order to
reconfigure the detector accordingly for the next physics run. In addition, the
results are also used offline for the events reconstruction. Both usages of the results
involve a drastic timing constraint on the way they are produced. It would be too
heavy to make the full calibration analysis offline (a first pass over the data would
be needed to produce calibration results), and sometimes too late (for calibrations
required very frequently, or for which results are needed for the detector
configuration). Only the most complex calibration data analysis should be done
offline.

Therefore, a dedicated framework has been designed and implemented to achieve
as much as possible the detector calibration directly online, and to address the
heterogeneous requirements specific to each calibration task.
ALICE DAQ and ECS manual

The Detector Algorithms (DAs) 395
22.2 The Detector Algorithms (DAs)

The ALICE online calibration framework is used to implement and run a set of
detector algorithms (DAs), which are calibration tasks running online. DAs are
provided by the sub-detector teams, using the global framework to develop
detector-specific calibration procedures.

Each DA grabs detector data and produces results online. These results can be
reused directly online, e.g. to configure the detector, or shipped offline to be
post-processed (if necessary) and used in event reconstruction.

To cover all the needs, we have defined two types of DAs, running either in
exclusive mode (a dedicated run is required), or in the background (the task can be
performed in a physics run):

• In the first case, called ‘LDC DA’, the data is recorded locally and in parallel on
the LDCs, during a dedicated standalone run (single detector running), usually
of short duration. At end of run, a DA process is launched on each LDC to
analyze the data. In this mode, parallelization is optimal, and results are readily
available for further export to FEE. Typical example is the pedestal run, with
few hundreds of big events. The temporary data files stored on local disk are
useful to re-play, tune or debug the DA behavior.

• In the second case, called ‘MON DA’, a single DA process of a given type is
active during the run, on a dedicated monitoring machine. Data samples are
picked up from the normal data flow in a non-intrusive way, and processed
directly on the fly. The DA gets only what it can process, events may be
dropped in case the DA is busy. The DA selects the type of events it needs
(calibration, physics) and the source to monitor (typically, a detector or a set of
detectors). At the end of run, the DA goes in a post-processing phase to finalize
the results. A generic example is to populate an histogram event by event, and
at the end of run compute a fit and extract some key values. Another example of
MON DA usage is for the dead channel mapping, where millions of events may
be needed to cover the full detector. Many runs may be needed to collect such
statistics, in which case intermediate results are saved at end of run, and
re-loaded at the next start of run.

22.3 DA framework architecture

The overall DA framework architecture, and in particular the interaction of the DA
processes with the online components, can be seen in Figure 22.1. The DA process
consists of detector code, written in C++ using the AliROOT framework, which is
the ALICE offline code repository (therefore providing the same calibration
algorithm implementation for both online and offline environments). This code
uses the DAQ DA interface library in order to communicate with the other systems.
The ECS is in charge of launching the DA where needed for the corresponding run
type, depending on the experiment running mode selected by the operator. The run
type is propagated to the other online systems and to the detector, in order to make
ALICE DAQ and ECS manual

396 Detector Algorithms Framework
�

sure corresponding settings are applied. This information is also stored in the
experiment logbook (see Chapter 24) for bookkeeping and further reference.

Upon startup, the DA connects to the main DAQ data flow (being local files for
LDC DA, or remote data sources for MON DA) in order to collect events.

The DA may use some configuration information stored centrally in the detector
database (see Section 4.4.6), which allows the operator to define the DA operation
settings or algorithm parameters.

At run time, all output messages from the DA process are exported to the central
DAQ/ECS log system (described in Chapter 11) for online operator display and
archival. Health of the process is also monitored constantly by the ECS, and return
error code checked upon exit.

While running, the DA may publish its results to the experiment Data Quality
Monitoring (DQM) framework (see Chapter 23) for feedback to the operator,
graphical display, consistency and quality checks, or reuse for monitored data
reduction in the DQM agents.

The DA is notified the end of the run, and then proceeds to final post-processing
and results saving. The control system checks that the DA completes its tasks
within the required time, and aborts the process if necessary. Allowed DA
end-of-run duration is kept short for the global runs (typically less than one
minute), to minimize data taking dead-time. Whenever possible, demanding
computation tasks exceeding this threshold are performed offline where there is no
such constraint.

The DA can save persistent files to a configuration database (local or central) in
case results are to be reused in the DAQ (e.g. for a further DA run, for other online
processes, for FEE configuration, etc). Calibration results are also exported to the
File Exchange Server (see Section 17.4), which is the system used to publish data
from DAQ to the other components. The DA result files may as well be reused in
HLTor DCS. Most importantly, the results are collected offline by the Shuttle

Figure 22.1 DA framework architecture.
ALICE DAQ and ECS manual

DA framework implementation 397
framework (see Section 17.5), where the output data is post-processed and archived
in the Offline Condition Database.

22.4 DA framework implementation

The framework relies on two main components:

• a programming interface for the DAs to interract with the outside world.

• a launch mechanism to start and control the DAs at runtime, so that they run
when appropriate.

We describe below the DA Framework version 1.

22.4.1 DA interface API

The DAs are implemented in the AliROOT framework so that the calibration
processing code is shared with the offline code and components reused. However,
the DAQ provides the API for the detector code input and output mechanisms. The
main loop (subscription to events and their processing) of each DA program is
implemented in the detector code, and not provided by the framework library. The
framework distribution provides some examples of DA skeletons with a main loop
reading and processing events.

The API described in the file daqDA.h provides the means to read configuration
files, store and export results, and get some runtime information. In particular, it
provides:

• functions to read and write data from/to the DAQ detector database
(Section 4.4.6): daqDA_DB_getFile() and daqDA_DB_storeFile().

• a function to export result files to the File Exchange Server (Section 17.4):
daqDA_FES_storeFile().

• a function to check if the DA is requested to terminate
daqDA_checkShutdown(). If this is the case, the DA should exit within
promptly (no more than 30-60 seconds, or may be killed).

• functions to retrieve the ECS loop parameters in case of a calibration requiring
multiple iterations with different settings:
daqDA_ECS_getCurrentIteration() and
daqDA_ECS_getTotalIteration().

• a function to store some results locally (e.g. partial results, or output to be used
in another DA running locally). This is useful to avoid storing large files in the
database in the case they don’t need to be used on other hosts. It can be done
with daqDA_localDB_storeFile(). Files stored there are then available at
runtime in the directory $DAQ_DETDB_LOCAL.

• a function to convert a trigger class name into a trigger class id, which then may
be used in the monitoring API (Chapter 5) to request events on a specific trigger
class. This function is named daqDA_getClassIdFromName().
ALICE DAQ and ECS manual

398 Detector Algorithms Framework
�

Output messages should simply be written to stdout: they are then redirected to
the infologger log repository.

The DAs use the monitoring API described in Chapter 5 to retrieve events at
runtime, either from a file (LDC DA) or from the online data stream (MON DA).

The DAs may export data to AMORE (DQM framework, see Chapter 23) for
interactive display and results checking. It usually involves including the file
AmoreDA.h provided by the AMORE distribution, and linking with the library
libAmoreDA.a.

For runtime stability, DAs are required to be provided by detector teams as static
executables having no dependency. It allows DAs of different detectors relying on
different AliROOT versions to coexist on the same machine.

Note that the DA build mechanism is provided by AliROOT and out of control
from the DAQ. For reference, DAs may be build with the following make targets in
$ALICE_ROOT:

• make daqDA-DETCODE-NAME:builds a DA executable

• make daqDA-DETCODE-rpm:builds and package in RPM files all the DAs for a
given detector detector.

The AMORE environment variable should be defined and pointing to the AMORE
installation directory in order for AliROOT to link the DAs with AMORE support.

Some mandatory information should be provided in the RPM description tag.
AliROOT takes care of packaging the DA in RPM. However the documentation
fields must be completed in the DA source code (first comment of the file, /* ...
*/, with the syntax KEYWORD: VALUE).

They are automatically extracted from the source code and copied in the RPM
description. This information is used to validate and check the packages before
deployment at the experimental area.

The following fields should be filled in:

• Contact : E-mail of package responsibles (development and runtime)

• Link : External link to additional DA documentation, including some raw data
test files and necessary input configuration files.

• Reference Run : The run number of a reference run made at the
experimental area in the appropriate conditions for this DA, with recording to
CASTOR enabled. This will be used to validate the DA. Such run should use a
single LDC for a DA running on LDCs. It should contain a realistic number of
events.

• Run type : The ECS run type(s) in which this DA should be running.
(PHYSICS for global runs, otherwise the detector specific ECS run type in
standalone operation).

• DA type : LDC or MON (for DAs running respectively on LDC at end of run or
on Monitoring node during the run)

• Number of events needed : The number of events needed to produce
adequate results.

• Input files : Names of files needed to run the DA. (these are the files stored
ALICE DAQ and ECS manual

DA framework implementation 399
in the DAQ detector configuration database).

• Output files : Names of files produced by this DA (including local files, FXS
files, detDB files)

• Trigger types used: Trigger type of events used by this DA.

These fields may be checked after the RPM is created with the command rpm -qip
daqDA-....rpm

22.4.2 DA control mechanisms

The launching mechanism depends on the DA type, LDC or MON.

In both cases, the DA executable is called with command line arguments giving the
monitoring data source(s) where to get the events (the name of an online
monitoring data source for a MON DA, or a list of local data files for a LDC DA).
No other command line arguments are allowed to be given to a DA executable. All
configuration parameters should be read by the DA from the configuration
database.

The starting of the DA processes is done through the LAUNCHER facility (identified
as such in the infoLogger messages) implemented in the runControl package
file named da.c.

The DA rely on a set of runtime parameters that must always be defined, because
used by some of the I/O functions.

22.4.2.1 Runtime parameters

The following runtime parameters, defined as environment variables, are necessary
in order to use the DA I/O functions of the DA library. Most of them are provided
by the DATE standard setup procedure and completed by calling launcher process
for variable items.

• DATE_DETECTOR_CODE, DATE_RUN_NUMBER, DATE_ROLE_NAME,
DATE_FES_DB, DATE_FES_PATH: access parameters to the File Exchange
Server (see Section 17.4).

• DATE_RUN_NUMBER, DAQ_DB_LOGBOOK : access to the logbook, e.g. to retrieve
information on trigger classes to filter on them.

• DAQDALIB_PATH :path to the installation directory of the DAQ DA library, typically
/opt/daqDA-lib . This is needed to use the I/O functions (database and File
Exchange Server).

• AMORE_DB_MYSQL_... : definition of the access parameters to the AMORE
database, in case some data shall be exported to the DQM. One may also need to define
AMORE_DA_NAME used to identify the target AMORE output table (set to
DATE_ROLE_NAME by default).

• DAQ_DETDB_LOCAL: location of a local directory that may be used as a persistent
location to store data. Usually, it is set to
${DATE_SITE}/${DATE_ROLE_NAME}/db.

At the moment, only the DATE_DETECTOR_CODE is not set automatically (because
specific to the DA) and should be defined in a wrapper script.
ALICE DAQ and ECS manual

400 Detector Algorithms Framework
�

It might also be necessary to define ROOTSYS to a dummy string, e.g. NULL or some
ROOT routines called in some DA may crash if this variable is undefined.

When testing a DA executable manually, one may define the variable
DAQDA_TEST_DIR in order to use a dummy configuration database and File
Exchange Server. The directory pointed by this variable will be used to read
configuration files from there, and to export result files (as to the File Exchange
Server). The DATE_DETECTOR_CODE, DATE_ROLE_NAME, DATE_RUN_NUMBER
shall still be defined in this situation.

Similarly, if a full AMORE setup is not available in the test environment, it is
possible to define AMORE_NO_DB to true and an associated directory
AMORE_NO_DB_DIR as a fake database.

At run time, the DAQ starts the DA in a directory named
DATE_SITE_WORKING_DIR, and typically located in
${DATE_SITE}/${DATE_ROLE_NAME}/PARTITION-DETECTOR/work_DA-...

This directory is meant to be a temporary working directory. Content may be
cleared after the DA exits. Persistent files should be saved to the configuration
database or to the DAQ_DETDB_LOCAL local directory.

22.4.2.2 LDC DA launching

LDC DAs are started by the ECS at the end of the run, after data taking is finished.
The ECS looks in the DAQ database (Files section in editDb) for a script based
on the corresponding hardcoded SYNCHRONOUS action name in the ECS SMI file
defining the state machine of this detector. Such database files (host field left
empty) are named for example /ECS/FMD/FMD_COMPUTE_GAIN or
/ECS/TPC/TPC_PULSER_DA.

The content of this file should be an executable (SHELL or other) script, defining
necessary variables and launching the corresponding DA executable (passing to it
the provided arguments), e.g.

export DATE_DETECTOR_CODE=TPC

/opt/daqDA-TPC-PULSER/TPCPULSERda.exe $@

The script is copied on the machine and executed at end of run, after the DAQ has
completed the run and the local data files are available.

22.4.2.3 MON DA launching

MON DAs are started by the runControl following the configuration file named
after the runControl: /das/RCNAME.config where RCNAME is the
runControl name (and host field left empty). Example names of such files are
/das/ALLPHYSICS_1.config for the partition PHYSICS_1 or
/das/FMD.config for a standalone FMD detector operation.

The file syntax is the following (as implemented in the runControl package):
every line contains a sequence of fields: DA name, name of the MON machine (DATE
role) where the DA shall be executed, name of the script to be executed (DATE
database File entry in editDb, to be named /das/scripts/... (and host
field left empty), e.g. /das/scripts/FMD-Base), input parameter to be given to
ALICE DAQ and ECS manual

DA framework implementation 401
the script (the name of a valid monitoring data source, e.g. ^FMD to monitor FMD
data, or @* to monitor full events from all GDCs), and a list of tags (i.e. run types) to
activate the DA (typically, the name of the active runControl configuration, as
saved from the runControlHI, e.g. DEFAULT or PEDESTAL).

An example entry looks like:

DA-FMD-BASE mon-DA-FMD-0 FMD-Base ^FMD DEFAULT

In the case of a global run, it may be necessary to check (by accessing the logbook)
in the DA script if the corresponding detector belongs to the run, because at the
moment the runControl starts the MON DA scripts based on the configuration
name. Despite some filtering is done on the monitoring data source, this might not
be enough if the DA is not using monitoring by detector.

The content of the script itself is similar to the LDC DA script described above, and
is a simple wrapper to the DA executable.

The name and host of the MON roles have to be defined in the DATE configuration
database. A simple ROLE entry with TOPLEVEL set to 0, with an associated IPC
memory bank of size -1 for a single control pattern is sufficient.

Note that the data source and monitoring policy should be chosen with care for the
MON DAs, or they may not be able to receive at runtime the necessary data.

The MON DA is started at the start of the run, and is left active until the data taking
is over. At that point, it receives a QUIT command from the runControl launcher,
and the DA process should exit after a reasonnable time (time for post-processing
and exporting result files should be kept under control).
ALICE DAQ and ECS manual

402 Detector Algorithms Framework
�

ALICE DAQ and ECS manual

Part V

Data Quality
Monitoring
December 2010

ALICE DAQ Project

ALICE DAQ and ECS manual
23
Automatic
MOnitoRing
Environment
(AMORE)

The quality of the acquired data evolves over time depending on the status of the
detectors, its components and the operating environment. To use the valuable
bandwidth and the short data-taking period in an optimal way, the quality of the
data being actually recorded must be continuously monitored. Data Quality
Monitoring involves the online gathering of data, their analysis by user-defined
algorithms and the storage and visualization of the produced monitoring
information. This chapter describes the data quality monitoring framework
AMORE which is based on the DATE monitoring library in conjunction with
ROOT. It is a distributed and modular system, where each detector team develops
one or several plug-ins on top of the framework. This chapter also describes the
generic modules that leverage the development effort of the detectors teams, such
as the Generic GUI and the Quality Assurance agent.

23.1 Architecture. 406

23.2 Database. 408

23.3 Application flow . 413

23.4 Features details . 417

23.5 Application Programming Interface (API) 422

23.6 Tools . 437

406 Automatic MOnitoRing Environment (AMORE)
�

23.1 Architecture

AMORE (Automatic MOnitoRing Environment) is the Data Quality Monitoring
(DQM) framework for ALICE. It is a flexible and modular software framework
which is used to analyze data samples and produce and visualize monitoring
results. The data samples, ie. events or subevents, are coming either from LDCs or
from GDCs. Raw data files can also be used as data source. AMORE is founded on
the widely-used data analysis framework ROOT and uses the DATE monitoring
library (see Figure 23.1). In case the same analysis is needed online and offline, the
use of the ALICE Off-line framework for simulation, reconstruction and analysis
(AliRoot) is recommended at the level of the module.

23.1.1 Overview

AMORE is based on a publisher-subscriber paradigm (see Figure 23.2) where a
large number of processes, called agents, execute detector-specific decoding and
analysis on raw data samples and publish their results in a pool. Clients can then
connect to the pool and visualize the monitoring results through a dedicated user
interface. The serialization of the published objects, which occurs on the publisher
side before the actual storage in the database, is handled by the facilities provided
by ROOT. The only direct communication between publishers and clients consists
of notifications by means of DIM. The notifications coming from the outside world,
especially from the Experiment Control System (ECS), use the same technology.

Figure 23.1 Schema of the main dependencies of AMORE.

Figure 23.2 The publisher-subscriber paradigm in AMORE.
ALICE DAQ and ECS manual

Architecture 407
23.1.2 MonitorObjects

As illustrated in Figure 23.2, the monitoring results are encapsulated in so-called
MonitorObjects that essentially contain additional metadata allowing a proper and
coherent handling by the framework (see Section 23.5.1.1 for details).

23.1.3 AMORE taxonomy

AMORE uses a plug-in architecture to avoid any framework's dependency on
users' code. The plug-in mechanism is implemented through the ROOT reflection
feature. Users, usually detector teams, develop modules that are typically split into
two main parts corresponding to the publishing and the subscribing sides of the
framework (see Figure 23.3). The modules are built into dynamic libraries that are
loaded at runtime by the framework if, and when, it is needed. There are typically 4
libraries produced (stacked boxes on the left), one for each package (the four boxes at
the bottom of the figure): Common, Publisher, Subscriber and UI. A module's
publisher can be instantiated as many times as needed, to collect more statistics for
instance, each instance being called agent. The same is true for the subscriber part of
the module; we call these instances clients or GUI. Note that a module can contain
several publisher and subscriber classes (not shown in the Figure).

The shared libraries produced by the detector’s code are stored in a special
directory called amoreSite. Its location is defined in the variable $AMORE_SITE. The
directory also contains the file AMORE.params where the database credentials are
stored.

23.1.4 Publishers

The publishers must extend the class PublisherModule. They are meant to analyze
the raw data they receive and to publish results under the form of MonitorObjects.
However, not all publishers directly do the work. The Quality Assurance (QA)
module for example delegates the processing to the AliRoot QA framework. The
High Level Trigger (HLT) module retrieves the objects from a private network and
publish them in the pool. The module amoreDB simply publishes data retrieved
from a database, including from the AMORE pool itself. One should avoid, if
possible, to duplicate code but rather choose to delegate the processing to existing
frameworks and libraries.

Figure 23.3 Description of a module.
ALICE DAQ and ECS manual

408 Automatic MOnitoRing Environment (AMORE)
�

23.1.5 Clients

The clients must extend the class VisualModule. They mainly consist of a ROOT
GUI in which some MonitorObjects are displayed. Clients are usually tied to the
corresponding publisher.

There is no limit on what a client can do with the objects it retrieves, but it is in
general not a good idea to deeply modify them. Indeed, these modifications will
not be saved in the database and therefore will be lost to other clients. As a rule of
thumb, only do “cosmetic” changes in the GUI. Even adding lines or boxes to an
histogram shouldn’t be part of the client in most cases.

23.2 Database

23.2.1 Overview

The pool is implemented as a database. The open-source MySQL system was
chosen as it proved to be reliable, performant and light-weight. Figure 23.4 shows a
rough schema of the database and the detailed description of the tables follows.

The database is used not only to keep the data published by the agents, but also to
store the configuration of AMORE as a system. This includes information about the
agents such as the machine where they can run and to which detector they belong
(amoreconfig table) as well as the optional configuration files. When a new agent is
created in the system, a row is added to amoreconfig table. The table where
published data will be stored is created or recreated when the agent is started.

23.2.2 Archives

Former versions of the MonitorObjects can be kept. This is the case for the recent
values of the objects as long as the data table of the agent doesn’t exceed a certain
size. This size is specified in the table amoreconfig (see below the tables descriptions
for details). To decide what objects must be removed, a First In First Out policy is
applied.

Snapshots of the MonitorObjects can also be archived for a longer term on user’s
request or automatically, at SOR, EOR and every hour during a run. These data are
stored in a table that is pretty similar to the agent’s data table but whose name ends
with “_archives”. The objects will stay there for a week before being deleted,
although they could remain indefinitely if they are marked as permanent. For details
on the process which takes care of archiving, please refer to Section 23.4.3.
ALICE DAQ and ECS manual

Database 409
23.2.3 Tables descriptions

The main tables used by AMORE are described in this section.

amoreconfig

Figure 23.4 Schema of the database.

Table 23.1 amoreconfig List of the agents.

Field Description

host Machine, specified by its role name,
where the agent is allowed to run

agentname Name of the agent

detector Detector to which the agent belongs (3
letter code)

source Default data source (format: see
Chapter 5)

dimnode Dim server

poolnode Database server

defaultmodule Default module (in case the library
contains several modules)

configfile Default configuration file name

fifo_size Size of the data table in Bytes

image_generation Flag indicating whether objects’
images must be produced

production Flag indicating whether this agent
must always be running

extra_flags Any additional flag to pass to the
agent at startup
ALICE DAQ and ECS manual

410 Automatic MOnitoRing Environment (AMORE)
�

amoreref

Agents tables

Each agent has a table where its MonitorObjects are stored (one version of each
object per row). It is the “pool” where data transits between the publisher (agent)
and the subscriber (client). The name of such a table is the name of the agent. Its
size shouldn’t exceed the size specified in amoreconfig->fifo_size. This is enforced
within the framework. However, its minimal size will be the sum of the size of all
the agent’s MonitorObjects. If fifo_size is big enough, several versions of each
MonitorObject will be kept in the table, the oldest objects being removed first.

latest_values

Pointers to the latest version (i.e. last published) of each MonitorObject of each
agent. By querying it, one gets the time of the last update of a given object. This
table speeds up the numerous queries made by the clients by avoiding searching
the large data tables and by being stored in RAM (in-memory table). It is kept up to
date by triggers on the agent’s data tables.

Table 23.2 amoreref Configuration files table.

Field Description

detector Detector to which the file belongs (3
letter code)

filename Name of the file

data The file itself

updatetime Time of last update of the file

Table 23.3 Agents tables fields description

Field Description

moname Name of the MonitorObject

updatetime Time when the object has been stored

data The serialized MonitorObject

size Size of the data

run Run active when the object was last
updated

image Summary image
ALICE DAQ and ECS manual

Database 411
Archives tables

Each agent has an archive table where temporary and permanent copies of
MonitorObjects are stored. The naming convention for these tables is: <agent’s
name>_archives. The structure is very similar to the agent’s data table.

globals

Global variables used by AMORE. For example, the version of the current database schema is
stored here.

Table 23.4 latest_values table

Field Description

agentname The name of the agent publishing the
object

moname The name of the object

updatetime Time when the object was published

Table 23.5 Archives tables

Field Description

moname Name of the MonitorObject

updatetime Time when the object has been stored

data The serialized MonitorObject

size Size of the object

permanent Flag to indicate if the object’s archive is
permanent or not

run Run active when the object was last
updated

image Image of the object (if generated)

description Description of the archived object

Table 23.6 globals table

Field Description

variable Variable name

value Value
ALICE DAQ and ECS manual

412 Automatic MOnitoRing Environment (AMORE)
�

Roles

List of roles, i.e. names given to machines where agents can run.

Users

List the users allowed in the system.

Agents_access

Agents can only be manipulated (started or stopped) by certain users. This table
contains, for each agent, the user(s) allowed to do so.

Agents_details

The clients might need to know what an agent is publishing. They use DIM to get a
list of the objects being published, but this is often not enough. For example, the
Generic GUI needs to know the quality or the type of an object without actually
loading it from the database. The agents_details table is used for this purpose. It
contains, for each agent, a long string providing details on the objects it publishes.
The format is:

<string> = [<object_name>#<type>#<quality>#<expert/shifter>:]*.

Table 23.7 roles table

Field Description

name Role’s name

host Hostname of the machine

Table 23.8 users table

Field Description

user User’s name

Table 23.9 agents_access table

Field Description

agentname Agent’s name, foreign key to amore-
config

user Refers to a user in the table “Users”
ALICE DAQ and ECS manual

Application flow 413
23.3 Application flow

The agents and the clients are implemented as finite state machines (FSM). The
framework binaries, amoreAgent for the agents and amore for the clients, drive
the FSM and call the user’s module methods at certain steps.

The two FSMs are completely decoupled and the notion of monitor cycle is
different on both sides. Thanks to this decoupling, a slow process doesn’t affect the
others.

Table 23.10 agents_details table

Field Description

agent Agent’s name

details Details string
ALICE DAQ and ECS manual

414 Automatic MOnitoRing Environment (AMORE)
�

23.3.1 Agents and clients Finite State Machines

23.3.2 Initialization

AMORE is a pluggable software where the detectors’ libraries are loaded and the
proper class is initialized at runtime. When starting an agent with the binary
amoreAgent, three main steps occur:

1. Look up amoreconfig for the agent, check that it exists and runs on the
correct machine. Retrieve information about the agent (detector, class
name,...)

2. Load the detector library

Figure 23.5 Left: the publisher Finite State Machine. Right: the client Finite State Machine.
ALICE DAQ and ECS manual

Application flow 415
3. Instantiate the class

No configuration table exists for the clients, such as amoreconfig for the agents. One
must specify the detector name and the module name when starting the client.
Therefore the startup is simpler and skips the first step described above.

23.3.3 Agents and clients inheritance and methods calls sequences

All the publisher modules must inherit from PublisherModule. Reciprocally, the
subscriber modules must inherit from SubscriberModule. Their various
methods will then be called by the framework depending on its current state.
Figure 23.6 shows the detailed sequence of methods calls made by the framework
for the agents and the clients.
ALICE DAQ and ECS manual

416 Automatic MOnitoRing Environment (AMORE)
�

Figure 23.6 Sequence of methods calls on the agent and the client modules.
ALICE DAQ and ECS manual

Features details 417
23.4 Features details

23.4.1 Quality

Each MonitorObject has a quality associated with it. This quality is stored within
the object and can take different values :

• kNULLFLAG : no quality. It can be used for objects such as error message sent to
the client or intermediate objects needed to build another object.

• kINFO : Good quality.

• kWARNING : Object should be checked.

• kERROR : Object is clearly out of the reference, there is an error.

• kFATAL : Object is so incorrect that measures must be undertaken quickly.

To set the quality of an object, usually at End Of Cycle, use the method
SetQuality(flag) of the MonitorObject class.

By default, if not explicitly set by the publisher, the quality of an object is kFatal.

23.4.2 Expert/Shifter MonitorObjects

Each MonitorObject can be classified as shifter or expert, the former
representing a subset of the latter.

In order to publish a MonitorObject as shifter use the following example:

Publish(fMO, “MOname”, “MOtitle”, MonitorObject::kSHIFTER)

and as expert:

Publish(fMO, “MOname”, “MOtitle”, MonitorObject::kEXPERT)

which is the default if nothing is specified.

There are two ways of exploiting such a functionality.

1. Start the agent with the option “-f S” . In this way, only the shifter objects will
be published in the database and available in the GUI.

2. Start the agent with the usual options and filter the histograms in the client to
show only the shifter ones (check for each MonitorObject its expert flag). In
this way, all the objects will be published and available in the Logbook and in
the database, but only the shifter objects will be displayed in the GUI.

23.4.3 Archiver and FIFO

23.4.3.1 Purpose

When an expert is called by an operator, he might want to check and study the
objects even though the run has stopped. Therefore, snapshots of the
ALICE DAQ and ECS manual

418 Automatic MOnitoRing Environment (AMORE)
�

MonitorObjects must be saved, if not permanently at least for a week or longer.
The archiver is meant to give a way to archive and recover interesting
MonitorObjects for further study. The archiver must always be running and
available to receive new requests. It also performs a clean up every night to erase
temporary archives older than 7 days.

In addition to these mid and long-term archives, it might also be interesting to keep
a very detailed short-term history to discover when a problem occurred or started.
This is done through the so-called FIFO, which is directly implemented within the
database. It consists in keeping former versions of the objects in a First In First Out
queue (see Figure 23.7).

This chapter describes the general design of both features. For information about
how to operate the archiver, please refer to the ALICE DAQ WIKI.

23.4.3.2 Implementation of the archiver

The archiver package in AMORE depends only on the core package. It produces a
standalone binary that loads one or more ArchiverModule(s). It uses DIM to
receive users’ requests and SOR and EOR notifications; agents declare themselves
automatically to the archiver at SOR and EOR. The tasks to be executed by the
archiver are stored in an ordered queue. The complete class diagram of the package
is shown on Figure 23.8. People interested in further details are encouraged to read
the sources.

The archiver uses plug-ins, called ArchiverModules, to do the actual work of
archiving and cleaning up. The configuration of the archiver is done by means of a
configuration file (see Listing 23.1 for an example). The plug-in
StdArchiverModule is currently used for both the cleaning and the archiving. It
uses stored procedures to execute the archiving and to make permanent archives.

Figure 23.7 The archiving system in AMORE.
ALICE DAQ and ECS manual

Features details 419
Figure 23.8 Class diagram (including some interaction information) of the package archiver.

Listing 23.1 Example of a configuration file for the archiver

1: # Archiver config file
2: # Define the archiver module to use to archive
3: archiver_module_archive amore::archiver::StdArchiverModule
4: # Define the archiver module to use to clean up obsolete archives
5: archiver_module_clean amore::archiver::StdArchiverModule
6: # The number of days an archive is kept before it is cleared
7: std_archiver_obsolescence 7

Table 23.11 DIM commands

DIM commands Description

amore/archiver/archive Trigger the archiving.
Parameter is <name of agent>::[<name of object>]
If no object specified, all objects are archived.

amore/archiver/makePer-
manent

Make an archive permanent.
The parameter is <name of agent>::<name of
object>::<timestamp>
ALICE DAQ and ECS manual

420 Automatic MOnitoRing Environment (AMORE)
�

23.4.3.3 Implementation of the FIFO

The recent versions of the objects are kept in the data table (named after the agent’s
name). The size of the fifo, ie. the size of the table, is defined in the table amoreconfig
for every agent. A table size smaller than the sum of the size of all the published
objects results in a default behaviour where only the latest version of each object is
kept.

The PoolConnection in the publisher takes care of determining if the maximum size
is exceeded and, if so, to take the appropriate action, namely to delete the oldest
objects

23.4.3.4 Access to the archives

The Logbook gives full access to the archives and the FIFO with possibilities of
creating archives and making them permanent.

An archive request can also be sent from the Generic GUI.

23.4.4 Access Rights

One or more users from the table users are associated to every agent. They represent
the users allowed to start, stop and restart the agent. If the user “all” is associated to
the agent, all users present in the table are allowed to start, stop and restart the
agent.

When creating a new agent, the operator must specify the allowed user. If the user
is not present in the table or the field is left empty, the user “all” will be associated
to the agent.

23.4.5 ECS-AMORE interaction

23.4.5.1 Motivation

Agents must be able to react to the runs’ Start Of Run (SOR) and End Of Run (EOR)
in order to re-initialize themselves accordingly and possibly to reset certain
MonitorObjects.

amore/archiver/agentSOR The command that agents must use to declare them-
selves as alive at SOR or when they are started
Parameter is <name of agent>::<run number>

amore/archiver/agentEOR Define the command that agents must use to declare
themselves as alive at EOR or when they stop
Parameter is <name of agent>::<run number>

amore/archiver/printTasks Force the archiver to print a list of the tasks currently
in the system.

Table 23.11 DIM commands

DIM commands Description
ALICE DAQ and ECS manual

Features details 421
23.4.5.2 Implementation

The class RunControl (core) and its sub-class RunSequence (publisher) inherit
from DimClient and subscribe to the SOR and EOR Dim info provided by the
Logbook daemon. One command exists for each runControl, ie. for each detector
and for each partition. When a standalone run is started for detector XXX, the
corresponding command is received. In the case of a partition, the info for the
partition is updated with the new run number, as well as the info of each included
detector.

The RunSequence constructors takes as argument the name of the RunControl to
which it must listen. It is therefore the responsibility of the publisher to identify the
runControl. It does so by using the detector code attached to the agent and/or the
partition given at startup (parameter -p).

23.4.6 Logbook usage

23.4.6.1 Motivation

The Logbook contains a large number of metadata about runs. It is thus a valuable
source of information that AMORE needs to access. Moreover, AMORE takes
advantage of the Logbook web interface to make statistics and objects available to
the users worldwide.

23.4.6.2 Usages

At SOR, AMORE uses the Logbook to retrieve information about the run, such as
its type (PHYSICS, CALIBRATION,...) or the detectors it includes.

At SOR, the framework also stores data in the Logbook in order to have it listed in
the corresponding page of the web interface (see Table 23.12).

Every agent has one summary image that is generated in its method
GetSummaryImage(). During a run, the agent regularly stores it in the
Logbook.The update interval is currently set to 2 minutes and can be changed in
the class ImagePublisher.

Finally, at every end of cycle and at EOR, the agent inserts the following statistics in
the Logbook:

Table 23.12 Data passed to the Logbook at SOR

Field Description

Run number Which run the agent is running for.

Detector The code of the detector for which the agent is running

Agent’s name Name of the agent

Version of the module Version number of the module’s libraries

Configuration The configuration file specified at startup or by default
(if any)
ALICE DAQ and ECS manual

422 Automatic MOnitoRing Environment (AMORE)
�

• Number of objects

• Total number of objects published (all versions of all objects)

• Total number of bytes published

• Average CPU time per cycle

• Average real time per cycle

23.4.7 Multi thread image production

The image production is the functionality that makes the images of the
MonitorObjects available in the Logbook. In order to enable it, the flag
image_generation of the agent in the table amoreconfig must be set to 1.

The image generation can perform in single or multi-thread mode. In order to run it
in multi-thread mode, the option “-i” must be specified in the launching
parameters of the agent. It permits to split the data quality monitoring process in
two independent threads, one for the analysis and one for the image production.

23.5 Application Programming Interface
(API)

This section is dedicated to the API of AMORE. The classes and methods described
below are grouped by package. Only the public interface is presented. For details
on how to develop a new module please refer to the document “Modules’
developer’s guide” available on the AMORE website
(http://ph-dep-aid.web.cern.ch/ph-dep-aid/amore/).

23.5.1 Core

23.5.1.1 MonitorObject

Any object published in AMORE is encapsulated in a MonitorObject data
structure. To ensure type safety, a templated class hierarchy is used. AMORE
provides classes derived from MonitorObject to handle scalars, histograms (1D
and 2D) or TObjects, for example. Several of them are templated to specify the
type of histograms or scalars being encapsulated.

The MonitorObject abstract class contains a set of members that can be accessed
(read and/or write). The accessors follow the naming convention (for a member
fMyMember: GetMyMember)
ALICE DAQ and ECS manual

Application Programming Interface (API) 423
The following methods are available for each type of MonitorObject. In addition,
the interface of MonitorObjects subclasses contain type-specific methods, e.g.
Fill(...) for MonitorObjectHisto. Please have a look directly at the header
file core/MonitorObject.h to know what methods exist for each type.

Reset

Synopsis #include “MonitorObject.h”

void Reset()

Description The Reset method must be called to reset an object.

Draw

Synopsis #include “MonitorObject.h”

void Draw(Option_t* option = “”)

Description Draw the object on the current pad.

Table 23.13 Members of the class MonitorObject

Member Description

Name (read-only) Name of the object, used as a unique id. Can contain only
standard characters plus slashes (“/”), but no spaces.

Title Title of the object.

Description Description of the object.

UpdateTime
(read-only)

Last time the object was published in the database.

Quality Quality of the object. Variable of type QualityFlag_t. It
can take 1 of 5 values: kNULLFLAG (no quality), kINFO,
kWARNING, kERROR and kFATAL. See Chapter 23.4.1 for
details

ExpertFlag Specifies if the object is for shifter and/or expert. Variable
of type ExpertFlag_t. It can take 1 of 2 values: kEXPERT
and kSHIFTER.

DefaultDrawOption Default draw option to use when drawing this object.

DisplayHint Hints about how to display the object in the best way. This
is highly type-dependent. At present, the options ‘logx’
and ‘logy’ are accepted for any type of histogram.
ALICE DAQ and ECS manual

424 Automatic MOnitoRing Environment (AMORE)
�

23.5.1.2 Run

A class representing a run. At start of run, the publisher code receives an object of
this type.

RunType

Synopsis #include “Run.h”

string RunType()

Description Return the run type.

RunNumber

Synopsis #include “Run.h”

RunNumberType RunNumber()

Description Returns the run number.

RunDuration

Synopsis #include “Run.h”

int RunDuration()

Description Returns the number of minutes elapsed since this objects has been created. This can
be either the number of minutes since the start of the run if we received the SOR or
the number of minutes since this object was created in case we started the agent
after the SOR. The number of minutes is rounded down.

23.5.1.3 ConfigFile

This class represents a configuration file (stored in the database or in the file
system) and provides methods to access its content. It tries to parse the file during
its initialization. If the format is not recognized (pairs separated by spaces) the user
can still use the object to retrieve its content and make its own parsing. The user
gets a reference to a ConfigFile if one is specified at startup; he can also instantiates
such an object at anytime. Please refer to the Modules’ developer’s guide for more
details on how to use configuration files.
ALICE DAQ and ECS manual

Application Programming Interface (API) 425
InitWithFile

Synopsis #include “ConfigFile.h”

void InitWithFile (string filePath)

Description Initialize the object with the file specified by its path.

InitWithContent

Synopsis #include “ConfigFile.h”

void InitWithContent (string content)

Description Initialize the object directly with the content of a file.

Exists

Synopsis #include “ConfigFile.h”

void Exists ()

Description Call this method to know if this object has been initialized.

Returns True if this object has been initialized, false otherwise.

Get

Synopsis #include “ConfigFile.h”

string Get (string key)

Description If the parsing of the file was successful, and if the key was specified, the method
returns the value associated with the key.

Returns The value associated with the key.

Contains

Synopsis #include “ConfigFile.h”

string Contains (string key)
ALICE DAQ and ECS manual

426 Automatic MOnitoRing Environment (AMORE)
�

Description If the parsing of the file was successful, tells if the key was specified in the file.

Returns True if the key was specified in the file, false otherwise.

GetContent

Synopsis #include “ConfigFile.h”

string GetContent ()

Returns The content of the file.

GetMap

Synopsis #include “ConfigFile.h”

map<string, string> GetMap ()

Description If the parsing of the file was successful, returns the map of pairs created during
initialization. In case the parsing failed, returns an empty map.

Returns See description.

23.5.2 Publisher

23.5.2.1 PublisherModule

PublisherModule is an abstract class from which all the publisher classes must
inherit. It contains a certain number of methods called by the publisher’s Finite
State Machine. All of them, apart Reset(), Version() and GetSummaryImage(), must be
overwritten by the sub-classes. See Figure 23.6 to know when each method is called
by the FSM.

Below is the description of the methods not shown in the figure.

GetSummaryImage

Synopsis #include “PublisherModule.h”

string GetSummaryImage()

Description If implemented by the sub-classes, returns a so-called summary image.
ALICE DAQ and ECS manual

Application Programming Interface (API) 427
23.5.2.2 PublicationManager

The PublicationManager provides the interface to the publication methods. It also
gives access to a certain number of utility methods, for example to know the run
number or the agent’s name. Each sub-class of PublisherModule (see above) has
access to a global variable of type PublicationManager: gPublisher. It is the only
reference to the framework that the user’s modules have.

Publish

Synopsis #include “PublicationManager.h”

int Publish (TYPE object, const char* name, const char*
title,...)

Description This method exists in many flavours depending on the type of the object one wants
to publish. It can be a MonitorObject or a TObject, the latter being encapsulated in a
MonitorObjectTObject within the method. When publishing scalars or histograms,
it is required to specify through templates the real type of the object (TH1F or TH1D
for example). To be effective, a call to this method must occur within
BookMonitorObjects or StartOfRun in the class PublisherModule. Publish() doesn’t
actually update the object in the data pool; it declares it as being part of the set
which must be updated at every end of monitor cycle.

Returns 0 in case of success, 1 otherwise.

AgentName

Synopsis #include “PublicationManager.h”

string AgentName ()

Description Returns the agent’s name.

GetCurrentRun

Synopsis #include “PublicationManager.h”

Run* GetCurrentRun ()

Description Returns the current run number.

Unpublish
ALICE DAQ and ECS manual

428 Automatic MOnitoRing Environment (AMORE)
�

Synopsis #include “PublicationManager.h”

int Unpublish (MonitorObject*& mo)

Description Undo the Publish, ie. removes the object from the set of objects being updated at
every end of cycle. To be effective, a call to this method must occur within the
method PublisherModule::StartOfRun().

Returns 0 in case of success, 1 otherwise.

GetDbFileContent

Synopsis #include “PublicationManager.h”

string GetDbFileContent (string detector, string filename)

Description Load the specified file from the table amoreref.

Returns The content of the file if it exists, an empty string otherwise.

DownloadDbFile

Synopsis #include “PublicationManager.h”

bool DownloadDbFile (string detector, string filename)

Description Load the specified file from the table amoreref and save its content in a file named
filename in the current directory. If no file was found, an empty file is created.

Returns True if the file existed and was successfully downloaded, false otherwise.

Quit

Synopsis #include “PublicationManager.h”

void Quit ()

Description Ask the framework to quit. It does so in a graceful way, executing first the end of
run sequence.

GetMonitorObject

Synopsis #include “PublicationManager.h”
ALICE DAQ and ECS manual

Application Programming Interface (API) 429
MonitorObject* GetMonitorObject (string name)

Description Returns the MonitorObject published under the name name. If no object found,
returns NULL.

23.5.3 Subscriber

23.5.3.1 SubscriptionManager

The SubscriptionManager provides the interface to the subscription methods. It
also gives access to a certain number of utility methods. Each sub-class of
VisualModule (see below) has access to a global variable of type
SubscriptionManager: gSubscriber. It is the only reference to the framework that
the user’s visual modules have.

Subscribe

Synopsis #include “SubscriptionManager.h”

int Subscribe (const char* name)

Description Subscribe to the object given by ‘name’ = “<agentName>/<objectName”. In order
to later use the At(), described below, one must first subscribe to the object.

Returns A positive or null value in case of success.

A negative number in case of problem:

• -1: Max number of subscription reached.

• -2: Subscription error (dim error).

• -3: Memory allocation error.

Unsubscribe

Synopsis #include “SubscriptionManager.h”

int Unsubscribe (const char* name)

int Unsubscribe ()

Description Unsubscribe from the object given by ‘name’ = “<agentName>/<objectName>”. In
the variant without parameters, it unsubscribes from all the objects.

Returns In the first variant, with parameters, the return codes are:

• 0: success.
ALICE DAQ and ECS manual

430 Automatic MOnitoRing Environment (AMORE)
�

• 1: already unsubscribed.

• 2: object never subscribed.

• -1: the proxy doesn’t exist.

The variant without parameters returns the number of objects that were
unsubscribed.

At

Synopsis #include “SubscriptionManager.h”

template<typename MonitorObjectType> MonitorObjectType*
At(const char* key);

Description Returns the MonitorObject for the key = “<agentName>/<objectName>”. The
object must have been subscribed beforehand.

Last

Synopsis #include “SubscriptionManager.h”

template<typename MonitorObjectType> MonitorObjectType*
Last(const char* agent, const char* object);

Description Returns the MonitorObject specified by its agent and object name, NULL if none
was found. The returned object must be deleted by the caller.

Reset

Synopsis #include “SubscriptionManager.h”

int Reset (string agentName)

Description Send a reset command to the agent named agentName

Returns • 1:Ssuccess.

• 0: Reset could not be delivered (DIM issue).

• -1: Agent not found.

Stop

Synopsis #include “SubscriptionManager.h”
ALICE DAQ and ECS manual

Application Programming Interface (API) 431
int Stop (string agentname)

Description Send a command to the agent named agentName asking it to stop and exit.

Returns • 1: Success.

• 0: Stop could not be delivered (DIM issue).

• -1: Agent not found.

Archive

Synopsis #include “SubscriptionManager.h”

void Archive (const char* agentname, const char* moname, const
char* description)

Description Archive the object moname of agent agentname and put the description
description.

ActiveAgents

Synopsis #include “SubscriptionManager.h”

string ActiveAgents (const char* const det = 0)

Description Returns a string containing a list (colon separated) of the active agents in the
system.

AllowedActiveAgents

Synopsis #include “SubscriptionManager.h”

vector<string> AllowedActiveAgents (const char* name)

Description Returns a list of agents the subscriber is allowed to act on. Users can use this
method to know whether they are allowed to start, stop or reset a given agent.

An agent is allowed to act (stop/start) on an agent if one of the following is true:

a. The user (login name) that started the agent is the same as the user who started
the client

b. The detector code of the agent is the same as the detector code of the client

c. The user who started the client is equal to the detector code of the agent
ALICE DAQ and ECS manual

432 Automatic MOnitoRing Environment (AMORE)
�

AgentPublications

Synopsis #include “SubscriptionManager.h”

string AgentPublications (const char* const agentname)

Description Return a list of all the objects published by the agent called agentname.

AgentPublicationsDetailsStop

Synopsis #include “SubscriptionManager.h”

string AgentPublicationsDetails (const char* const agentname)

Description Return a list of all the objects published by the agent called agentName with
details on their quality, their type and their visibility (expert/shifter).

Returns A string with the format (repeted for each agent):
agentName#type#quality#visibility:

GetDbFileContent

Synopsis #include “SubscriptionManager.h”

string GetDbFileContent (string detector, string filename)

Description Load the specified file from the table amoreref.

Returns The content of the file if it exists, an empty string otherwise.

DownloadDbFile

Synopsis #include “SubscriptionManager.h”

bool DownloadDbFile (string detector, string filename)

Description Load the specified file from the table amoreref and save its content in a file named
filename in the current directory. If no file was found, an empty file is created.

Returns True if the file existed and was successfully downloaded, false otherwise.

StoreFile & StoreFileContent
ALICE DAQ and ECS manual

Application Programming Interface (API) 433
Synopsis #include “SubscriptionManager.h”

int StoreFile (string filename, string pathToFile, bool
overwrite)

int StoreFileContent (string filename, string content, bool
overwrite)

Description Store a file in the database table amoreref. The first variant accepts a path name to a
file, whereas the second directly takes the content of the file. The parameter
filename is used to name the file in the database and can be different from the file
on disk.

Returns • 0: Successful insertion.

• 1: File overwritten.

• -1: File already exists, no overwrite.

• -2: Failure.

GetFilesList

Synopsis #include “SubscriptionManager.h”

vector<string> GetFilesList (string pattern=””)

Description Find the (configuration) files stored in the database for the user (login name) who
started the client. If pattern is specified, only the files whose names contain the
pattern will be returned.

Returns A vector of the files’ names corresponding to the criteria

GetDetector

Synopsis #include “SubscriptionManager.h”

string GetDetector (string agentname)

Description Returns the detector’s code of the agent called agentname

GetRun

Synopsis #include “SubscriptionManager.h”

int GetRun(const char* key)
ALICE DAQ and ECS manual

434 Automatic MOnitoRing Environment (AMORE)
�

Description Each MonitorObject is stored with the run number during which it was
published. This method returns the run number for the object specified by key =
“<agentName>/<objectName>”.

23.5.4 User Interface (UI)

23.5.4.1 VisualModule

VisualModule is an abstract class from which all the UI classes must inherit. It
extends SubscriberModule. It contains a certain number of methods called by
the subscriber’s Finite State Machine. All of them, apart Reset(), must be
overwritten by the sub-class even though most of them are usually left empty. See
Figure 23.6 to know when each method is called by the FSM.

You can notice that the methods are almost the same between PublisherModule
and VisualModule (inheriting from SubscriberModule). This is made on
purpose to have the same structure and the same FSM on both side of the
framework. However, the drawback is that certain methods, especially
StartOfRun and EndOfRun, are not meaningful on the client side. Below a subset
of methods is listed which are either especially important or need a bit of
explanation.

fConfigFile

Synopsis #include “VisualModule.h”

Description A pointer to the configuration file. It might be null if no configuration file was
specified by the user at startup (using the flag -g).

Construct

Synopsis #include “VisualModule.h”

void Construct()

Description Build the user interface within this method.

Update

Synopsis #include “VisualModule.h”

void Update()

Description Get updates of the subscribed MonitorObjects in this method.
ALICE DAQ and ECS manual

Application Programming Interface (API) 435
Process

Synopsis #include “VisualModule.h”

void Process()

Description Process the MonitorObjects retrieved in Update() in this method.

InitAuto

Synopsis #include “VisualModule.h”

void InitAuto()

Description The user interface calls the Construct at startup. However this behaviour can be
changed by overwriting this method. Returns true if the module should initialize
automatically, false otherwise. In the latter case, the user will have to press the
button “Init”.

StartAuto

Synopsis #include “VisualModule.h”

void StartAuto()

Description The user interface waits after it has been initialized. This behaviour can be changed
in order to start updating the objects directly. Returns true if the module should
initialize and start automatically, false otherwise. In the latter case, the user will
have to press the button “Start”.

UpdatePeriod

Synopsis #include “VisualModule.h”

int UpdatePeriod()

Description The user interface updates the objects at regular intervals. By default, the duration
of the intervals is set to 30 seconds. This value can be changed within the module,
by overwriting the method UpdatePeriod() in the subclass of VisualModule.
The end user can, of course, still change the duration. The method will be called
right after Construct() has been called.
ALICE DAQ and ECS manual

436 Automatic MOnitoRing Environment (AMORE)
�

23.5.5 Detector Algorithms (DA) library

AmoreDA

Synopsis #include “AmoreDA.h”

AmoreDA(EMode mode)

Description Constructor of the class AmoreDA. mode should be kSender on the DA side. In an
hypothetical client, it would be kReceiver.

Send

Synopsis #include “AmoreDA.h”

int Send(const char* objectName, const TObject* obj, const
bool asMonitorObject=false)

Description This function has to be used in the DA to send the object obj under the name
objectName to the AMORE pool. It will be stored in a table named after the
content of the environment variable $AMORE_DA_NAME. If this variable is not
defined, $DATE_ROLE_NAME is used instead. The last parameter,
asMonitorObject, stipulates whether the TObject must be encapsulated within
a MonitorObject or not.

Returns 0 on success, 1 otherwise.

23.5.6 Archiver

23.5.6.1 ArchiverModule

Archive

Synopsis #include “ArchiverModule.h”

void Archive(string agentName, string moName, string
updatetime, string desc)

Description This method must implement the archiving of the object specified by its agent, its
name and its updatetime.

Clean
ALICE DAQ and ECS manual

Tools 437
Synopsis #include “ArchiverModule.h”

void Clean()

Description This method must clean up too old, non-permanent archives.

Init

Synopsis #include “ArchiverModule.h”

void Init(PoolInterface* pi, ConfigFile cf)

Description This method gives the opportunity to the module to set up its internal state, given a
connection to the database (PoolInterface) and to the configuration file.

23.6 Tools

The AMORE package contains various tools in the form of binaries or scripts. Their
purpose is to set up a machine, to configure or discover the environment, to launch
agents and clients and finally to manage the infrastructure (agents or configuration
files).

Here is a list of these tools sorted by category. For details on their usage please refer
to the AMORE section in the ALICE DAQ WIKI.

Setup newAmoreSite Create and set up a new AMORE_SITE

amoreMysqlSetup Configures MySQL for AMORE (create the db, users and
tables)

Utilities amore-config Get all configuration parameters for AMORE

amoreSetup Set up the environment according to AMORE.params

amoreUpdateDB.tcl Update the database scheme (after an update of AMORE)

Launchers amore Start a client

amoreAgent Start an agent

amoreArchiver Start the archiver

Management newAmoreAgent Create a new agent

amoreConfigFilesBrowser An interface to manage the configuration files

amoreAgentsManager.tcl An UI to start/stop the agents and the archiver

amoreEditDb An expert UI to browse and edit the database
ALICE DAQ and ECS manual

438 Automatic MOnitoRing Environment (AMORE)
�

ALICE DAQ and ECS manual

�

Part VI

The ALICE
electronic
logbook

December 2010

ALICE DAQ Project
eLogBook

�

ALICE DAQ and ECS manual
24
The ALICE
Electronic
Logbook

ALICE needs a bookkeeping facility to record not only the activities at the
experimental area but also all the non-physics metadata associated with each
performed run. As shifters come and go, a central information repository is needed
to store reports of incidents, configuration changes, achievements or planned
operations. Furthermore, a historical record of data-taking conditions and statistics
is needed not only to allow the selection of good run candidates for prioritized
offline processing, but also to detect trends and correlations, create aggregated
reports and assist the run coordination in fulfilling the scientific goals.The ALICE
Electronic Logbook (eLogbook) fulfills this requirement, providing a repository for
both shifters/experts reports and run statistics/conditions. It also provides a
modern Web-based Graphical Human Interface, allowing the members of the
ALICE collaboration to access and filter this vast data record easily.

24.1 Architecture. 442

24.2 Database. 443

24.3 Application Programming Interface 461

24.4 Logbook Daemon . 483

24.5 Tools . 484

24.6 Graphical User Interface. 487

442 The ALICE Electronic Logbook
�

24.1 Architecture

24.1.1 Overview

The ALICE Electronic Logbook (eLogbook) is the Data Acquisition bookkeeping
facility in ALICE. It is based on a LAMP (Linux, Apache, MySQL and PHP)
software stack, with the relational database (see Section 24.2) serving as a data
repository and the Web-based Graphical User Interface (see Section 24.6) providing
interactive access to members of the ALICE collaboration.

An Application Programming Interface implemented in C (see Section 24.3) and
several command-line tools (see Section 24.5) provide read/write access to the
repository.

A daemon process (see Section 24.3) collects data published by the DCS and inserts
it in the DB. Some of this data is gathered by a dedicated process that extracts
information published by the LHC via the DIP protocol and republishes it in DCS
(see Chapter 25).

Figure 24.1 The architecture of the eLogbook and it’s interfaces with the other ALICE systems and the LHC.
ALICE DAQ and ECS manual

Database 443
24.2 Database

24.2.1 Overview

The DB, running on a MySQL Server, is used to store heterogeneous data related
with the experiment's activities. InnoDB is used as a storage engine for its support
of both transactions and foreign keys constraints. As shown in Figure 22.2, the
tables that compose this DB can be grouped into 4 different categories:

• RUN CENTRIC: related to a specific run.

• LOG ENTRY CENTRIC: related to a specific human or automatic text report
with optional file attachment.

• USER CENTRIC: related to the GUI users.

• OTHER: tables that do not belong to the previous categories.

A stored procedure, called update_logbook_counters, is executed every 60
seconds (and at the end of each run) to update the different global counters in the
logbook table, whose value depends on partial counters spread throughout several
tables.

Daily backups are performed to a RAID 6 disk array and the CERN Advanced
STORage manager (CASTOR).

24.2.2 Table description

Below is a description of the eLogbook’s tables.

Figure 24.2 eLogbook’s database schema
ALICE DAQ and ECS manual

444 The ALICE Electronic Logbook
�

24.2.2.1 logbook table

This table stores per run information. It is populated by:

• PCA/DCA: run, time_created, time_completed, partition, detector, run_type,
calibration, numberOfDetectors, detectorMask, ecs_success, daq_success,
eor_reason, ecs_iteration_current and ecs_iteration_total fields.

• PCA Human Interface: runQuality field.

• runControl: HLTmode, DAQ_time_start, DAQ_time_end, runDuration,
detectorMask, numberOfLDCs, numberOfGDCs, LDClocalRecording,
GDClocalRecording, GDCmStreamRecording, eventBuilding and dataMigrated
fields.

• logbookDaemon: beamEnergy, beamType, LHCFillNumber,
LHCTotalInteractingBunches, LHCTotalNonInteractingBunchesBeam1,
LHCTotalNonInteractingBunchesBeam2, L3_magnetCurrent and
Dipole_magnetCurrent fields.

• CTP software: L2a and ctpDuration fields.

• TDSM: dataMigrated field.

• update_logbook_counters stored procedure:runDuration, totalSubEvents,
totalDataReadout, totalEvents, totalDataEventBuilder, totalDataRecorded,
averageDataRateReadout, averageDataRateEventBuilder,
averageDataRateRecorded, averageSubEventsPerSecond and
averageEventsPerSecond fields.

Table 24.1 logbook table (per run conditions and statistics)

Field Description

run Run number

time_created Run number creation timestamp

DAQ_time_start Start of data acquisition timestamp

DAQ_time_end End of data acquisition timestamp

time_completed End of run timestamp

time_update Database row update date/time

runDuration Duration of data acquisition

partition ECS partition name (NULL if stand-
alone run)

detector Detector name (NULL if global run)

run_type ECS run type

calibration Flag indicating if run is a calibration run

ecs_success Flag indicating if run finished success-
fully

daq_success Flag indicating if run data acquisition
finished successfully
ALICE DAQ and ECS manual

Database 445
eor_reason End of run reason as declared by the
ECS

beamEnergy Single beam energy in GeV

beamType Type of collisions (‘p-p’, ‘Pb-Pb’,
‘p-Pb’, NULL if no collisions)

LHCFillNumber LHC fill number

LHCTotalInteractingBunches Total number of interacting bunches

LHCTotalNonInteractingBunchesBea
m1

Total number of non-interacting
bunches in beam 1

LHCTotalNonInteractingBunchesBea
m2

Total number of non-interacting
bunches in beam 2

numberOfDetectors Number of detectors participating in
the run

detectorMask Bitmask of detectors participating in
run (LSB = detector ID zero)

log NOT USED

totalSubEvents Total number of subevents collected by
readout

totalDataReadout Total size of data collected by read-
out in bytes

averageSubEventsPerSecond Average number of subevents per sec-
ond

averageDataRateReadout Average data rate collected by readout
in bytes/second

totalEvents Total number of events generated by
eventBuilder

totalDataEventBuilder Total size of data generated by event-
Builder in bytes

averageEventsPerSecond Average number of events per second

averageDataRateEventBuilder Average data rate generated by
eventBuilder in bytes/second

totalDataRecorded Total size of data recorded by
mStreamRecorder in bytes

averageDataRateRecorded Average data rate recorded by
mStreamRecorder in bytes/second

numberOfLDCs Total number of LDCs participating in
the run

numberOfGDCs Total number of GDCs participating in
the run

Table 24.1 logbook table (per run conditions and statistics)

Field Description
ALICE DAQ and ECS manual

446 The ALICE Electronic Logbook
�

24.2.2.2 logbook_detectors table

This table stores per detector per run information. It is populated by:

• runControl: run_number, detector and run_type fields.

• GUI: run_quality field.

• CTP software: L2a field.

numberOfStreams NOT USED

LDClocalRecording Flag indicating if local recording in the
LDCs was enabled

GDClocalRecording Flag indicating if local recording in the
GDCs was enabled

GDCmStreamRecording Flag indicating if mStreamRecording
mode was enabled

eventBuilding Flag indicating if Event Building was
enabled

LHCperiod LHC period ID (e.g. LHC09c)

HLT mode High Level Trigger mode

dataMigrated Status of the data migration to Tier 0

runQuality Global run quality flag for the run as
specified by the ECS shifter

L3_magnetCurrent Current of the L3 magnet in Amperes
(signed)

Dipole_magnetCurrent Current of the Dipole magnet in
Amperes (signed)

L2a Total number of L2a trigger decisions
generated

ctpDuration Duration during which at least 1 trigger
class time sharing group was active since
SOR in seconds

ecs_iteration_current Current ECS iteration number for
detector calibration with several runs

ecs_iteration_total Total ECS iterations expected for detec-
tor calibration with several runs

Table 24.1 logbook table (per run conditions and statistics)

Field Description

Table 24.2 logbook_detectors table

Field Description

run_number Run number

detector Detector name
ALICE DAQ and ECS manual

Database 447
24.2.2.3 logbook_stats_LDC table

This table stores per LDC per run information. The HLT counters are populated by
hltAgent and the other fields by readout.

24.2.2.4 logbook_stats_LDC_trgCluster table

This table stores per trigger cluster per LDC per run information. It is populated by
readout.

run_type ECS run type

run_quality Run quality for the detector/run pair as indicated by
the ECS shifter (‘No report’, ‘Good run’, ‘Bad
run’)

L2a Number of L2a trigger decisions generated for this
detector

Table 24.2 logbook_detectors table

Field Description

Table 24.3 logbook_stats_LDC table

Field Description

run Run number

LDC LDC rolename

detectorId Detector ID as specified by the id field of the
DETECTOR_CODES table

eventCount Number of subevents collected by readout

eventCountPhysics Number of PHYSICS subevents collected by
readout

eventCountCalibration Number of CALIBRATION subevents collected by
readout

bytesInjected Size of data collected by readout in bytes

bytesInjectedPhysics Size of PHYSICS data collected by readout in
bytes

bytesInjectedCalibration Size of CALIBRATION data collected by readout
in bytes

hltAccepts Number of HLT accept decisions for this LDC

hltRejects Number of HLT reject decisions for this LDC

hltBytesRejected Size of data rejected by HLT decisions for this LDC in
bytes

time_update Database row update date/time
ALICE DAQ and ECS manual

448 The ALICE Electronic Logbook
�

24.2.2.5 logbook_stats_GDC table

This table stores per GDC per run information. It is populated by eventBuilder.

24.2.2.6 logbook_stats_files table

This table stores per data file per run information related with the full data chain,
from the file creation up to the migration to CASTOR. It is mostly populated by
mStreamRecorder, with the status field (and corresponding timestamps) also
updated by TDSM.

Table 24.4 logbook_stats_LDC_trgCluster table

Field Description

run Run number

LDC LDC rolename

cluster Trigger cluster ID

eventCount Number of subevents collected by UHDGRXW

bytesInjected Size of data collected by readout in bytes

time_update Database row update date/time

Table 24.5 logbook_stats_GDC table

Field Description

run Run number

GDC GDC rolename

eventCount Number of events generated by eventBuilder

eventCountPhysics Number of PHYSICS events generated by event-
Builder

eventCountCalibration Number of CALIBRATION events generated by
eventBuilder

bytesRecorded Size of data generated by eventBuilder in bytes

bytesRecordedPhysics Size of PHYSICS data generated by event-
Builder in bytes

bytesRecordedCalibration Size of CALIBRATION data generated by event-
Builder in bytes

time_update Database row update date/time

Table 24.6 logbook_stats_files table

Field Description

id File ID

run Run number
ALICE DAQ and ECS manual

Database 449
24.2.2.7 logbook_daq_active_components table

This table stores per run information related with the active DAQ components
(DDLs, LDCs, GDCs). It is populated by runControl.

24.2.2.8 logbook_shuttle table

This table stores per run information related with the Offline Shuttle processing. It is
populated by ECS, with the different processing status updated directly by the
Shuttle software.

fileName Filename (without path)

location Path to current file directory

local Flag indicating if file is local

rolename Rolename of DAQ node writing the file

hostname Hostname of DAQ node writing the file

pid Process ID writing the file

time_update Database row update date/time

time_write_begin File writing start date/time

time_write_end File writing end date/time

time_migrate_request File migration request date/time

time_migrate_begin File migration start date/time

time_migrate_end File migration end date/time

status File status (‘Writing’, ‘Closed’, ‘Waiting
migration request’, ‘Migration
requested’, ‘Migrating’, ‘Migrated’)

eventCount Number of events written to file

size File size in bytes

Table 24.6 logbook_stats_files table

Field Description

Table 24.7 logbook_daq_active_components table

Field Description

run Run number

LDC Active LDCs IDs (LSB = ID zero)

GDC Active GDCs IDs (LSB = ID zero)

DDL Active DDLs IDs (LSB = ID zero)
ALICE DAQ and ECS manual

450 The ALICE Electronic Logbook
�

Table 24.8 logbook_shuttle table

Field Description

run Run number

shuttle_done Flag indicating if Shuttle processing is complete

test_mode Flag indicating if Shuttle should run in test mode

update_time Database row update date/time

SPD Shuttle processing status for detector SPD
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

SDD Shuttle processing status for detector SDD
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

SSD Shuttle processing status for detector SSD
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

TPC Shuttle processing status for detector TPC
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

TRD Shuttle processing status for detector TRD
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

TOF Shuttle processing status for detector TOF
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

PHS Shuttle processing status for detector PHOS
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

CPV Shuttle processing status for detector CPV
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

HMP Shuttle processing status for detector HMPID
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

MCH Shuttle processing status for detector MUON_TRK
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

MTR Shuttle processing status for detector MUON_TRG
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

PMD Shuttle processing status for detector PMD
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

FMD Shuttle processing status for detector FMD
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

T00 Shuttle processing status for detector T0 (‘UNPRO-
CESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

V00 Shuttle processing status for detector V0 (‘UNPRO-
CESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

ZDC Shuttle processing status for detector ZDC
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

ACO Shuttle processing status for detector ACORDE
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)
ALICE DAQ and ECS manual

Database 451
24.2.2.9 logbook_DA table

This table stores per run per Detector Algorithm information.

24.2.2.10 logbook_AMORE_agents table

This table stores per run per AMORE agent information. It is populated by the
AMORE framework.

EMC Shuttle processing status for detector EMCal
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

TST Shuttle processing status for detector DAQ_TEST
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

HLT Shuttle processing status for HLT (‘UNPROCESSED’,
‘INACTIVE’, ‘FAILED’, ‘DONE’)

GRP Shuttle processing status of global run parameters
(‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’, ‘DONE’)

TRI Shuttle processing status for of the Trigger parame-
ters (‘UNPROCESSED’, ‘INACTIVE’, ‘FAILED’,
‘DONE’)

Table 24.8 logbook_shuttle table

Field Description

Table 24.9 logbook_DA table

Field Description

run Run number

detector Detector name related to the DA

DAname DA name

DAversion DA version number (from RPM)

DAstdout Output of the DA

role Rolename of DAQ node associated with the DA

exitCode Exit code of the DA

commandLine Executed command

workingDir Working directory

Table 24.10 logbook_AMORE_agents table

Field Description

run Run number

detector Detector name related to the AMORE agent

agentName AMORE agent name
ALICE DAQ and ECS manual

452 The ALICE Electronic Logbook
�

24.2.2.11 logbook_trigger_clusters table

This table stores per run per trigger cluster information. It is populated by the CTP
software.

24.2.2.12 logbook_trigger_classes table

This table stores per run per trigger class information. It is populated by:

• CTP software: run, classId, className, classGroupId, classGroupTime, L0b,
L0a, L1b, L1a, L2b, L2a and ctpDuration fields.

• hltAgent: hltAccepts, hltPartialAccepts, hltOnly, hltRejects and
hltBytesRejected fields.

agentVersion AMORE agent version number (from RPM)

runtimeParameters AMORE agent runtime parameters

MOpublished Number of published Monitoring Objects

MOversionsPublished Number of published Monitoring Objects versions

bytesPublished Total size of published Monitoring Objects in bytes

averageCPUtime Average CPU time of a monitor cycle

averageRealTime Average real time of a monitor cycle

QAsummaryImage Quality Assurance summary image

QAsummaryImageSize Size of Quality Assurance summary image in bytes

time_update Database row update date/time

Table 24.10 logbook_AMORE_agents table

Field Description

Table 24.11 logbook_trigger_clusters table

Field Description

run Run number

partition ECS partition name

cluster Trigger cluster ID (1-6)

detectorMask 24-bit detector IDs bitmask (LSB = detector ID zero)
corresponding to the readout detectors of this clus-
ter

inputDetectorMask 24-bit detector IDs bitmask (LSB = detector ID zero)
corresponding to the trigger detectors of this clus-
ter

triggerClassMask 50-bit trigger classes ID bitmask (LSB = trigger
class ID zero) of the trigger classes triggering this
cluster
ALICE DAQ and ECS manual

Database 453
24.2.2.13 logbook_trigger_inputs table

This table stores per run per trigger input information. It is populated by the CTP
software.

Table 24.12 logbook_trigger_classes table

Field Description

run Run number

classId Trigger class ID (0-49)

className Trigger class name

classGroupId Trigger class time sharing group ID

classGroupTime Trigger class time sharing group duration in seconds

L0b Number of L0b trigger decisions generated for this
trigger class

L0a Number of L0a trigger decisions generated for this
trigger class

L1b Number of L1b trigger decisions generated for this
trigger class

L1a Number of L1a trigger decisions generated for this
trigger class

L2b Number of L2b trigger decisions generated for this
trigger class

L2a Number of L2a trigger decisions generated for this
trigger class

ctpDuration Duration during which this trigger class was active
since SOR in seconds

hltAccepts Number of HLT accept decisions for this trigger class

hltPartialAccepts Number of HLT partial accept decisions for this trig-
ger class

hltOnly Number of HLT only decisions for this trigger class

hltRejects Number of HLT reject decisions for this trigger class

hltBytesRejected Size of data rejected by HLT decisions for this trigger
class in bytes

Table 24.13 logbook_trigger_inputs table

Field Description

run Run number

inputLevel Trigger input level (0-2)

inputId Trigger input Id (1-24 for level 0, 1-24 for
level 1, 1-12 for level 2)
ALICE DAQ and ECS manual

454 The ALICE Electronic Logbook
�

24.2.2.14 logbook_trigger_config table

This table stores per run information related with the CTP configuration. It is
populated by the CTP software.

24.2.2.15 logbook_stats_HLT table

This table stores per run information related with the HLT decisions. It is populated
by the update_logbook_counters stored procedure.

24.2.2.16 logbook_stats_HLT_LDC table

This table stores per run per HLT LDC information. It is populated by hltAgent.

inputName Trigger input name

inputCount Number of trigger signals for this trigger
input

Table 24.13 logbook_trigger_inputs table

Field Description

Table 24.14 logbook_trigger_config table

Field Description

run Run number

configFile Trigger configuration file

alignmentFile Trigger alignment file

Table 24.15 logbook_stats_HLT table

Field Description

run Run number

hltAccepts Total number of HLT accept decisions for this run

hltPartialAccepts Total number of HLT partial accept decisions for this
run

hltOnly Total number of HLT only decisions for this run

hltRejects Total number of HLT reject decisions for this run

hltBytesRejected Size of data rejected by HLT decisions for this run in
bytes

time_update Database row update date/time

Table 24.16 logbook_stats_HLT_LDC table

Field Description

run Run number
ALICE DAQ and ECS manual

Database 455
24.2.2.17 logbook_comments table

This table stores the Log Entries. It is populated by the GUI (human generated Log
Entries such as End-Of-Shift reports), by runControl (automatic “start/end of
run” Log Entries) and by the PCA Human Interface (ECS operator “end of run”
Log Entries).

LDC HLT LDC rolename

hltAccepts Number of HLT accept decisions taken by this HLT
LDC

hltPartialAccepts Number of HLT partial accept decisions taken by this
HLT LDC

hltOnly Number of HLT only decisions taken by this HLT
LDC

hltRejects Number of HLT reject decisions taken by this HLT
LDC

time_update Database row update date/time

Table 24.16 logbook_stats_HLT_LDC table

Field Description

Table 24.17 logbook_comments table

Field Description

id Log Entry ID

run Run number associated with the Log Entry

userid User ID of the Log Entry author as specified in the id
field of the logbook_users table

title Log Entry title

comment Log Entry body

class Log Entry class (‘HUMAN’, ‘PROCESS’)

type Log Entry type (‘GENERAL’, ‘HARDWARE’, ‘CAVERN’,
‘SOFTWARE’, ‘NETWORK’, ‘EOS’, ‘OTHER’)

time_created Log Entry creation date/time

deleted Flag indicating if the Log Entry is deleted

parent Parent Log Entry (for threads)

root_parent Root parent Log Entry (for threads)

dashboard Flag indicating if the Log Entry is an announcement

time_validity Log Entry validity date/time
ALICE DAQ and ECS manual

456 The ALICE Electronic Logbook
�

24.2.2.18 logbook_comments_interventions table

This table expands the logbook_comments table, adding additional information
related to on call interventions. It is populated by the GUI.

24.2.2.19 logbook_files table

This table stores the files attached to the Log Entries. It is populated by the GUI.

24.2.2.20 logbook_threads table

This table expands the logbook_comments table, adding additional information
related to threads. It is populated by the GUI.

Table 24.18 logbook_comments_interventions table

Field Description

commentid Log Entry ID

type Intervention type (‘REMOTE’, ‘ONSITE’)

Table 24.19 logbook_files table

Field Description

commentid ID of the Log Entry to which the file is attached to

fileid File ID

filename Filename

size File size in bytes

title File title

data File binary data

thumbnail_small File small-sized thumbnail (100x100, only filled if file
is an image)

thumbnail_medium File medium-sized thumbnail (320x320, only filled if
file is an image)

content_type File Content-Type

time_created File creation date/time

deleted Flag indicating if the file is deleted

Table 24.20 logbook_threads table

Field Description

id Log Entry ID (root parent Log Entry)

title Thread title

ticket_status Ticket status (‘OPEN’, ‘CLOSED’)
ALICE DAQ and ECS manual

Database 457
24.2.2.21 logbook_subsystems table

This table stores the definition of the Log Entries Subsystems.

24.2.2.22 logbook_comments_subsystems table

This table stores the relationship between the Log Entries and the Subsystems. It is
populated by the GUI.

24.2.2.23 logbook_users table

This table stores the main information of the GUI’s users. It is populated by the GUI
at the moment of the users’s first login.

Table 24.21 logbook_subsystems table

Field Description

id Subsystem ID

name Subsystem name

text Subsystem text (to be displayed in GUIs)

parent Parent subsystem

email Automatic email notification email address (single or
multiple in CSV format)

notify_no_run_log_entries Flag indicating if an automatic email notification
should be sent for the Log Entries of this subsystem
without run number

notify_run_log_entries Flag indicating if an automatic email notification
should be sent for the Log Entries of this subsystem
with a run number

notify_quality_flags Flag indicating if an automatic email notification
should be sent for the Log Entries of this subsystem
related with the change of the quality flags

Table 24.22 logbook_comments_subsystems table

Field Description

commentid Log Entry ID

subsystemid Subsystem ID

Table 24.23 logbook_users table

Field Description

id User ID

first_name User’s first name

full_name User’s full name
ALICE DAQ and ECS manual

458 The ALICE Electronic Logbook
�

24.2.2.24 logbook_users_privileges table

This table stores the GUI’s users privileges. It is populated by the GUI.

24.2.2.25 logbook_users_profiles table

This table stores additional information of the GUI’s users. It is populated by the
GUI.

24.2.2.26 logbook_filters table

This table stores the definition of the search filters predefined values (see
Section 24.6.3.6).

email User’s email address

group_name User’s CERN group name

Table 24.23 logbook_users table

Field Description

Table 24.24 logbook_users_privileges table

Field Description

id User privilege ID

userid User ID

time_start Privilege start date/time

time_end Privilege end date/time

privilege Privilege set (one or more of ‘NONE’, ‘READ’, ‘WRITE’,
‘ADMIN’, ‘SUPER’)

revoked Flag indicating if the privilege is revoked

Table 24.25 logbook_users_profiles table

Field Description

userid User ID

name Profile entry name

value Profile entry value

Table 24.26 logbook_filters table

Field Description

id User filter ID

userid User ID

content_name Name of the GUI’s content to which the filter applies
ALICE DAQ and ECS manual

Database 459
24.2.2.27 DETECTOR_CODES table

This table stores the definition of the different ALICE detectors.

24.2.2.28 TRIGGER_CLASSES table

This table stores the definition of the different ALICE trigger classes.

24.2.2.29 logbook_config table

This table stores internal eLogbook information (e.g. version number).

column_qs_var Name of the GUI’s URL query string variable to
which the filter’s value will be assigned

name Filter’s name

value Filter’s value or SQL code

print_order Filter’s order of appearance in the GUI

sql_flag Flag indicating if this filter is SQL based

load_by_default Flag indicating if this filter should be loaded by
default

enabled Flag indicating if this filter is enabled

Table 24.26 logbook_filters table

Field Description

Table 24.27 DETECTOR_CODES table

Field Description

id Detector ID

name Detector name

code Detector 3-letter code

isVirtual Flag indicating if the detector is virtual

description Detector description

Table 24.28 TRIGGER_CLASSES table

Field Description

className Trigger class name

description Trigger class description

obsolete Flag indicating if the trigger class is obsolete
ALICE DAQ and ECS manual

460 The ALICE Electronic Logbook
�

24.2.3 Stored Procedures

Below is a list of the eLogbook’s stored procedures.

update_logbook_counters

Synopsis CALL update_logbook_counters(run_number INT)

Description Updates the runDuration, totalSubEvents, totalDataReadout,
totalEvents, totalDataEventBuilder, totalDataRecorded,
averageDataRateReadout, averageDataRateEventBuilder,
averageDataRateRecorded, averageSubEventsPerSecond and
averageEventsPerSecond fields of the logbook table.

It also updates the statistics of the logbook_stats_HLT table.

Returns No value is returned.

DAQlogbookSP_updateListTriggerClasses

Synopsis CALL DAQlogbookSP_updateListTriggerClasses()

Description Updates the list of trigger classes stored in the TRIGGER_CLASSES table, based on
the distinct values of the className field of the logbook_trigger_classes
table.

Returns No value is returned.

24.2.4 Events

Below is a list of the eLogbook’s events.

DAQlogbookEV_updateListTriggerClasses

Description Executes the DAQlogbookSP_updateListTriggerClasses stored procedure
every day at 01:00 h.

Table 24.29 logbook_config table

Field Description

Name Configuration parameter name

Value Configuration parameter value

Description Configuration parameter description
ALICE DAQ and ECS manual

Application Programming Interface 461
24.3 Application Programming Interface

24.3.1 Overview

Read/write access is available via the DAQlogbook C API. A version for Tcl is also
available as a shared library.

24.3.2 Environment variables

The following environment variables are available to configure the behavior of the
DAQlogbook API:

• DAQ_DB_LOGBOOK: sets the credentials to access the DB. The format is
“USERNAME:PASSWORD@HOSTNAME/DBNAME”.

• WITH_INFOLOGGER: sets the logging mode. If set, logging uses the
infoLogger system. If not set, log messages are sent to stdout.

• DAQ_LOGBOOK_VERBOSE: sets the logging level. Possible values are:

• 0: no messages

• 1: error messages

• 2: same as 1 + debug messages

• > 2: same as 2 + all SQL queries

If not set, the default value is 1.

24.3.3 Database connection functions

Below is a list of functions providing basic connection functionality to the
eLogbook’s database.

DAQlogbook_open

Synopsis #include “DAQlogbook.h”

int DAQlogbook_open(const char *cx_params)

Description Open a MySQL connection. Credentials should be given via the cx_params
parameter in the “USERNAME:PASSWORD@HOSTNAME/DBNAME” format. If an
empty string is passed the credentials are taken from the DAQ_DB_LOGBOOK
environment variable. If both are empty, eLogbook access via the API is disabled
and further read/write function calls are ignored.

Returns Upon successful completion, this function will return a value of zero. Otherwise,
the following value will be returned:

-1: error while connecting to the database.
ALICE DAQ and ECS manual

462 The ALICE Electronic Logbook
�

1: cx_params and DAQ_DB_LOGBOOK are empty, eLogbook access disabled.

DAQlogbook_close

Synopsis #include “DAQlogbook.h”

int DAQlogbook_close(void)

Description Close a MySQL connection and release previously used resources.

Returns This function always returns a value of zero.

24.3.4 Logging functions

Below is a list of functions allowing logging configuration.

DAQlogbook_verbose

Synopsis #include “DAQlogbook.h”

void DAQlogbook_verbose(int v)

Description Set the logging level of the API. Possible values are the same as described for the
DAQ_LOGBOOK_VERBOSE environment variable.

Returns No value is returned.

24.3.5 eLogbook READ access functions

Below is a list of functions providing READ access to the eLogbook database.

DAQlogbook_datafile_getIdFromName

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_getIdFromName(const char *name,
unsigned int run, int *id)

Description Retrieve the ID of the entry in the logbook_stats_files table corresponding to
the given filename and run number. The value is stored in the id parameter.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

Application Programming Interface 463
DAQlogbook_get_AMORE_agent_summary_img

Synopsis #include “DAQlogbook.h”

int DAQlogbook_get_AMORE_agent_summary_img(const char
*agentname, void **summary_img, unsigned long *n_bytes)

Description Retrieve the Quality Assurance summary image of a specific AMORE agent for the
latest run where the agent was active. The image itself is stored in the
summary_img parameter and it’s size in bytes in the n_bytes parameter.

Returns Upon successful completion, this function will return a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_query_getTriggerClusters

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getTriggerClusters(unsigned int run,
char *partition, unsigned int *clustermask)

Description Build a 6-bit bitmask (LSB = cluster #1) of the active trigger clusters for the given
run. The value is then stored in the clustermask parameter.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_query_getDetectorIdsFromTriggerClassMask

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getDetectorIdsFromTriggerClassMask
(unsigned int run, unsigned long long triggerClassMask,
unsigned int *detectorMask, unsigned int *clustermask)

Description Build a 24-bit detector IDs bitmask (LSB = detector ID zero, stored in the
detectorMask parameter) corresponding to all the readout detectors of all the
trigger clusters triggered by a given 50-bit trigger classes bitmask
(triggerClassMask parameter). Optionally, if the clustermask parameter is
not NULL, it will store at the end of the function execution a 6-bit bitmask of the
triggered trigger clusters.

NOTE: This function is optimized to cache the full trigger configuration for a given
run, so that the database is not queried again if the last call to this function used the
same run number. Calling it with run parameter equal to zero clears the cache.

Returns Upon successful completion, this function returns a value of zero. Otherwise, the
following value will be returned:
ALICE DAQ and ECS manual

464 The ALICE Electronic Logbook
�

-1: no trigger cluster is triggered by the given trigger classes.

> 0: error code with a value equal to the line number where the error occurred.

DAQlogbook_query_getDetectorIdsFromTriggerCluster

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getDetectorIdsFromTriggerCluster
(unsigned int run, unsigned int cluster, unsigned int
*detectorMask)

Description Build a 24-bit detector IDs bitmask (LSB = detector ID zero, stored in the
detectorMask parameter) corresponding to the readout detectors of the given
trigger cluster.

NOTE: This function is optimized to cache the full trigger configuration for a given
run, so that the database is not queried again if the last call to this function used the
same run number. Calling it with run parameter equal to zero clears the cache.

Returns Upon successful completion, this function returns a value of zero. Otherwise, the
following value will be returned:

-1: given trigger cluster not found.

> 0: error code with a value equal to the line number where the error occurred.

DAQlogbook_query_getDetectors

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getDetectors(unsigned int run, unsigned
int *detectormask)

Description Build a 24-bit detector IDs bitmask (LSB = detector ID zero, stored in the
detectormask parameter) corresponding to the readout detectors participating in
the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_query_getPartition

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getPartition(unsigned int run, char
**partition, int *standalone)
ALICE DAQ and ECS manual

Application Programming Interface 465
Description Retrieve the name of the ECS partition for the given run (stored in the partition
parameter). In case of a standalone run, the value will be equal to the detector
name.

Additionally, at the end of the execution of the function, the standalone
parameter will indicate if it’s a standalone or a global run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_query_getDetectorsInTriggerClasses

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getDetectorsInTriggerClasses(unsigned
int run, char **table)

Description Build a 50x24 boolean table (table parameter) indicating, for each detector ID,
which trigger classes will trigger it in the given run.

The table indexes are of the form triggerClassId * 24 + detectorID. As an
example, if detector ID equal to 5 is triggered by trigger class equal to 20:

table[20 * 24 + 5] = 1

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_query_getTriggerClassNames

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getTriggerClassNames(unsigned int run,
char ***table)

Description Build a 50-entries table (table parameter) indicating, for each possible trigger
class ID, the corresponding trigger class name in the given run.

The table indexes are the trigger class IDs (from 0 to 49) and the values are the
trigger class names. A value of NULL means that the corresponding trigger class ID
is undefined for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

466 The ALICE Electronic Logbook
�

DAQlogbook_query_getTriggerClassIdFromName

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getTriggerClassIdFromName(unsigned int
run, const char *className, unsigned char *classId)

Description Retrieve, for a given trigger class name, the corresponding trigger class ID (stored
in the classId parameter) in the given run.

If more than 1 match is found, the first one is retrieved.

Returns Upon successful completion, this function returns a value of zero. Otherwise, the
following value will be returned:

-1: given trigger class name undefined for this run.

-10: more than 1 match found.

> 0: error code with a value equal to the line number where the error occurred.

DAQlogbook_query_getDetectorsInTriggerInput

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getDetectorsInTriggerInput(unsigned int
run, char **table)

Description Build a 24-entries boolean table (table parameter) indicating, for each detector ID,
if the corresponding detector is a trigger detector in the run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_query_getL2aPerTriggerClass

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getL2aPerTriggerClass(unsigned int run,
int **L2a)

Description Build a 50-entries table (L2a parameter) indicating, for each trigger class ID, the
number of L2 accept decisions in the given run.

The table indexes are the trigger class IDs (from 0 to 49) and the values are the
number of L2 accept decisions. A value of -1 means that the corresponding trigger
class ID is undefined for the run.
ALICE DAQ and ECS manual

Application Programming Interface 467
Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_query_getHLTDecisionsPerTriggerClass

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_getHLTDecisionsPerTriggerClass(unsigned
int run, int **hltAccepts, int **hltPartialAccepts, int
**hltOnly, int **hltRejects)

Description Build four 50-entries tables (hltAccepts, hltPartialAccepts, hltOnly and
hltRejects parameters) indicating, for each trigger class ID, the number of
different HLT decisions in the given run.

The table indexes are the trigger class IDs (from 0 to 49) and the values are the
number of HLT decisions. A value of -1 means that the corresponding trigger class
ID is undefined for the run.

The tables will store, at the end of the execution of the function, the following
information:

• hltAccepts: number of full event accept decisions per trigger class ID.

• hltPartialAccepts: number of partial readout decisions per trigger class
ID.

• hltOnly: number of “hltOnly” decisions per trigger class ID.

• hltRejects: number of full event reject decisions per trigger class ID.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_get_DAQ_active_components

Synopsis #include “DAQlogbook.h”

int DAQlogbook_get_DAQ_active_components(unsigned int
run,const char* type,void **mask_of_ids,int *n_bytes)

Description Retrieve the list of active DAQ components of a given type in the given run.
Possible values for the type parameter are: DDL, LDC, GDC.

At the end of the execution of the function, the mask_of_ids parameter will store
a bitmask of the active components’IDs as defined in the DATE_CONFIG database.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

468 The ALICE Electronic Logbook
�

DAQlogbook_query_runType

Synopsis #include “DAQlogbook.h”

int DAQlogbook_query_runType(unsigned int run, char
**runType)

Description Retrieve, for a given run, the corresponding ECS run type (stored in the runType
parameter).

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_getLastRun

Synopsis #include “DAQlogbook.h”

int DAQlogbook_getLastRun(const char *partition, unsigned int
*run, unsigned char *active)

Description Retrieve, for a given ECS partition or detector (partition parameter), the number
of the last run started (stored in the run parameter). The active parameter will
store, at the end of the execution of the function, if the retrieved run is still active or
not.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_getActiveRuns

Synopsis #include “DAQlogbook.h”

int DAQlogbook_getActiveRuns(unsigned int **runs, unsigned
int *size)

Description Build an array with the number of the runs currently active (stored in runs
parameter). The size parameter will store the number of runs found.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

Application Programming Interface 469
DAQlogbook_getAmoreAgents

Synopsis #include “DAQlogbook.h”

int DAQlogbook_getAmoreAgents(unsigned int run, char
***agents, unsigned int *size)

Description Build a list of active AMORE agents (stored in agents parameter) for a given run.
The size parameter will store the number of agents found.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

24.3.6 eLogbook WRITE functions

Below is a list of functions providing WRITE access to the eLogbook database.

DAQlogbook_update_newRun

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_newRun(unsigned int run, const char
*partition, unsigned int ndetectors, const char **detectors,
const char *runtype, unsigned int calibration, int
checkOldRuns)

Description This function should be called when a new run is started. It creates a new entry in
the logbook table and initializes several fields of this table: run, time_created,
partition, detector, run_type, calibration, numberOfDetectors and
detectorMask. Additionally, it also creates one entry in the
logbook_detectors table for each detector participating in the run and
initializes one entry in the logbook_daq_active_components table with the
run number.

If the checkOldRuns flag is set, the function will first close all active runs having
as participating detector(s) any of the ones participating in this run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_detectorMask

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_detectorMask(unsigned int run)
ALICE DAQ and ECS manual

470 The ALICE Electronic Logbook
�

Description Update the detectorMask and numberOfDetectors fields of the logbook
table, based on the content of the logbook_detectors table.

It is called automatically by the DAQlogbook_update_newRun function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_EndRun

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_EndRun (unsigned int run, int
ecs_success, int daq_success, const char * const eor_reason)

Description This function should be called when a run finishes. It populates the ecs_success,
daq_success and eor_reason fields of the logbook table. It also:

• populates the logbook_shuttle table with the UNPROCESSED value for each
detector participating in the run.

• changes all files (related to the run) entries from the logbook_stats_files
table still in Writing to Closed.

• updates the dataMigration flag from the logbook table.

• updates the different counters by executing the update_logbook_counters
stored procedure.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_startTime

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_startTime(unsigned int run)

Description Update the DAQ_time_start field of the logbook table with the current
timestamp. It also adds a Log Entry of class PROCESS, marking the start of data
taking.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

Application Programming Interface 471
DAQlogbook_update_stopTime

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_stopTime(unsigned int run)

Description Update the DAQ_time_end and the runDuration fields of the logbook table. It
also adds a Log Entry of class PROCESS, marking the end of data taking.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_DAQrunning

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_DAQrunning(unsigned int run)

Description Update the time_update field of the logbook table with the current timestamp.
It should be called periodically during data taking, serving as heartbeat of the run
and allowing the detection of crashed or not properly terminated runs.

It will also update the different counters by executing the
update_logbook_counters stored procedure.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_DAQnode_config

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_DAQnode_config(unsigned int run,int
LDCs,int GDCs, int LDCrecordingMode, int GDCrecordingMode)

Description Update the logbook table with the DAQ nodes configuration, populating the
following fields: numberOfLDCs, numberOfGDCs, LDClocalRecording,
GDClocalRecording, GDCmStreamRecording and eventBuilding.

It will also initialize the dataMigrated field based on the active recording
configuration.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.
ALICE DAQ and ECS manual

472 The ALICE Electronic Logbook
�

DAQlogbook_update_DAQnode_statsGDC

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_DAQnode_statsGDC(unsigned int run, char
*GDC, unsigned long long eventCount, unsigned long long
eventCountPhysics, unsigned long long eventCountCalibration,
unsigned long long bytesRecorded, unsigned long long
bytesRecordedPhysics, unsigned long long
bytesRecordedCalibration)

Description Update the counters in the logbook_stats_GDC table. When called for the first
time for the given run and GDC pair, it will create a new entry in the table.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_insert_DAQnode_statsLDC

Synopsis #include “DAQlogbook.h”

int DAQlogbook_insert_DAQnode_statsLDC(unsigned int run, char
*LDC, unsigned int detectorId, unsigned long long eventCount,
unsigned long long eventCountPhysics, unsigned long long
eventCountCalibration, unsigned long long bytesInjected,
unsigned long long bytesInjectedPhysics, unsigned long long
bytesInjectedCalibration)

Description Create a new entry in the logbook_stats_LDC table for the given run and LDC
pair, initializing the different counters to the specified values. Subsequent changes
to this entry should be done via the DAQlogbook_update_DAQnode_statsLDC
function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_DAQnode_statsLDC

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_DAQnode_statsLDC(unsigned int run, char
*LDC, unsigned long long eventCount, unsigned long long
eventCountPhysics, unsigned long long eventCountCalibration,
unsigned long long bytesInjected, unsigned long long
bytesInjectedPhysics, unsigned long long
bytesInjectedCalibration)
ALICE DAQ and ECS manual

Application Programming Interface 473
Description Update the counters in the logbook_stats_LDC table for the given run and LDC
pair previously created via the DAQlogbook_insert_DAQnode_statsLDC
function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_DAQnode_statsLDC_trgCluster

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_DAQnode_statsLDC_trgCluster(unsigned
int run, char *LDC, unsigned char clusterId, unsigned long
long eventCount, unsigned long long bytesInjected)

Description Updates the counters in the logbook_stats_LDC_trgCluster table. When
called the first time for a given run, LDC and trigger cluster ID tuple, it will create a
new entry in the table.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_DAQ_active_components

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_DAQ_active_components(unsigned int run,
const char* type, void *mask_of_ids, int n_bytes)

Description Update one of the fields of the logbook_daq_active_components table. The
type parameter defines which field is updated and can be one of the following:
LDC, GDC, DDL.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_ECS_iteration

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_ECS_iteration(unsigned int run,
unsigned int currentIteration, unsigned int totalIterations)
ALICE DAQ and ECS manual

474 The ALICE Electronic Logbook
�

Description Update the ecs_iteration_current and ecs_iteration_total fields of the
logbook table.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_new

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_new(unsigned int run, const char
*filePath, unsigned int local)

Description Create a new entry in the logbook_stats_files table for the given run,
populating the run, fileName, location, local, rolename, hostname, pid
and time_write_begin fields. It should be called when a new data file is created.

The returned value should be used as an ID for further function calls related with
data files statistics or status.

Returns Upon successful completion, this function returns the ID of the created table entry.
Otherwise, an error code with a value equal to the line number where the error
occurred will be returned.

DAQlogbook_datafile_update_size

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_update_size(int id, unsigned long
long size, unsigned long long events)

Description Update the size and eventCount fields of the logbook_stats_files table for
a given data file ID (as returned by DAQlogbook_datafile_new).

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_update_location

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_update_location(int id, const char
*new_location)

Description Update the location field of the logbook_stats_files table for a given data
file ID (as returned by DAQlogbook_datafile_new).
ALICE DAQ and ECS manual

Application Programming Interface 475
Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_setStatus_closed

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_setStatus_closed(int id)

Description Update the following fields of the logbook_stats_files table:

• status: Closed.

• time_write_end: current timestamp.

It should be called when a data file with the given ID (as returned by
DAQlogbook_datafile_new) is closed.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_setStatus_waitingMigrationRequest

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_setStatus_waitingMigrationRequest(int
id)

Description Update the following fields of the logbook_stats_files table:

• status: Waiting migration request.

• time_write_end: current timestamp.

It should be called when a data file with the given ID (as returned by
DAQlogbook_datafile_new) is ready for migration.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_setStatus_migrationRequested

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_setStatus_migrationRequested(int id)

Description Update the following fields of the logbook_stats_files table:
ALICE DAQ and ECS manual

476 The ALICE Electronic Logbook
�

• status: Migration request.

• time_migrate_request: current timestamp.

It should be called when a data file with the given ID (as returned by
DAQlogbook_datafile_new) is marked for migration.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_setStatus_migrating

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_setStatus_migrating(int id)

Description Update the following fields of the logbook_stats_files table:

• status: Migrating.

• time_migrate_begin: current timestamp.

It should be called when a data file with the given ID (as returned by
DAQlogbook_datafile_new) starts to be migrated.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_setStatus_migrated

Synopsis #include “DAQlogbook.h”

int DAQlogbook_datafile_setStatus_migrated(int id)

Description Update the following fields of the logbook_stats_files table:

• status: Migrated.

• time_migrate_end: current timestamp.

It should be called when a data file with the given ID (as returned by
DAQlogbook_datafile_new) finishes being migrated.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_datafile_updateRunStatus

Synopsis #include “DAQlogbook.h”
ALICE DAQ and ECS manual

Application Programming Interface 477
int DAQlogbook_datafile_updateRunStatus(unsigned int run)

Description Update the dataMigrated field of the logbook table for the given run. The new
value is based on the status of the run’s data files stored in the
logbook_stats_files table. Only non-local files are taken into account.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_runQuality

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_runQuality(unsigned int run, const char
*runQuality)

Description Update the value of the runQuality field of the logbook table for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_cluster

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_cluster (unsigned int run, unsigned int
cluster, unsigned int detectorMask, const char *partition,
unsigned int inputDetectorMask, unsigned long long
triggerClassMask)

Description Create a new entry in the logbook_trigger_clusters table, thus declaring a
new trigger cluster for the given run. The detectorMask and
inputDetectorMask parameters should be a 24-bit detector ID bitmask of the
detectors participating in the given cluster as readout detectors and as trigger
detectors, respectivly. The triggerClassMask parameter should be a 50-bit
trigger classes ID bitmask of the trigger classes defined for the given cluster.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_update_triggerConfig

Synopsis #include “DAQlogbook.h”
ALICE DAQ and ECS manual

478 The ALICE Electronic Logbook
�

int DAQlogbook_update_triggerConfig (unsigned int run, const
char * const configurationFile, const char * const
alignmentFile)

Description Create a new entry in the logbook_trigger_config table, thus registering the
trigger configuration and the alignment settings for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_triggerClassName

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_triggerClassName(unsigned int run,
unsigned char classId, const char *className, unsigned int
classGroupId, float classGroupTime)

Description Create a new entry in the logbook_trigger_classes table, thus registering a
new trigger class for the given run. The classId parameter should be the
corresponding bit number of the trigger class (as defined in the 50-bit trigger
classes bitmask) and the className parameter should be the full trigger class
name as defined by the Trigger Coordination.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_update_triggerClassCounter

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_triggerClassCounter(unsigned int run,
unsigned char classId, unsigned long long L0bCount, unsigned
long long L0aCount, unsigned long L1bCount, unsigned long
L1aCount, unsigned long L2bCount, unsigned long L2aCount,
float ctpDuration)

Description Update the L0b, L0a, L1b, L1a, L2b, L2a and ctpDuration fields of the
logbook_trigger_classes table for the given run and trigger class ID pair. It
should be called only after the corresponding trigger class ID has been registered
using the DAQlogbook_update_triggerClassName function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.
ALICE DAQ and ECS manual

Application Programming Interface 479
DAQlogbook_insert_triggerInput

Synopsis #include “DAQlogbook.h”

int DAQlogbook_insert_triggerInput(unsigned int run, unsigned
int inputId, const char *inputName, unsigned int inputLevel)

Description Create a new entry in the logbook_trigger_inputs table, thus registering a
new trigger input for the given run41.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_update_triggerInputCounter

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_triggerInputCounter(unsigned int run,
unsigned int inputId, unsigned int inputLevel, unsigned long
long inputCount)

Description Update the inputCount field of the logbook_trigger_inputs table for the
given run and trigger input (represented by the inputId and inputLevel pair).
It should be called only after the corresponding trigger input has been registered
using the DAQlogbook_insert_triggerInput function.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_update_triggerDetectorCounter

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_triggerDetectorCounter(unsigned int
run, const char *detector, unsigned long L2aCount)

Description Update the L2a field of the logbook_detectors table for the given run and
detector pair.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_update_triggerGlobalCounter

Synopsis #include “DAQlogbook.h”
ALICE DAQ and ECS manual

480 The ALICE Electronic Logbook
�

int DAQlogbook_update_triggerGlobalCounter(unsigned int run,
unsigned long L2aCount, float ctpDuration)

Description Update the L2a and ctpDuration fields of the logbook table for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, -1
will be returned.

DAQlogbook_update_setCTPbitInDetectorMask

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_setCTPbitInDetectorMask(unsigned int
run)

Description Set to 1, for the given run, the bit in the detectorMak field of the logbook table
corresponding to the CTP detector ID (represented by the 3-letter code TRI).

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_insert_AMORE_agent

Synopsis #include “DAQlogbook.h”

int DAQlogbook_insert_AMORE_agent(unsigned int run, const
char *detector, const char *agentname, const char
*agentversion, const char *params)

Description Create a new entry in the logbook_AMORE_agents table, thus registering an
AMORE agent as being active for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_AMORE_agent

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_AMORE_agent(unsigned int run, const
char *agentname, unsigned int mo_published, unsigned int
mo_v_published, unsigned long long bytes_published, float
aver_cpu_time, float aver_real_time)
ALICE DAQ and ECS manual

Application Programming Interface 481
Description Update the statistics of the given AMORE agent for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_AMORE_agent_summary_img

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_AMORE_agent_summary_img(unsigned int
run, const char *agentname, char *summary_img, unsigned long
n_bytes)

Description Update the Quality Assurance summary image of the given AMORE agent for the
given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_HLTmode

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_HLTmode(unsigned int run, const char
*HLTmode)

Description Update the HLTmode field of the logbook table for the given run. It also sets to 1
the bit in the detectorMak field of the logbook table corresponding to the HLT
detector ID (represented by the 3-letter code HLT) if the given HLT mode is set to B
or C.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_local_HLT_stats

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_local_HLT_stats(unsigned int run, char
*LDC, unsigned long hltAccepts, unsigned long hltRejects,
unsigned long long hltBytesRejected, unsigned long long
*hltBytesRejectedPerTriggerClass)
ALICE DAQ and ECS manual

482 The ALICE Electronic Logbook
�

Description Update the HLT statistics per detector LDC (stored in the logbook_stats_LDC
table) and the number of bytes rejected - following an HLT decision - per trigger
class (stored in the logbook_trigger_classes table) for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_insert_HLT_stats

Synopsis #include “DAQlogbook.h”

int DAQlogbook_insert_HLT_stats(unsigned int run,char *LDC)

Description Create a new entry in the logbook_stats_HLT_LDC table, thus registering an
HLT LDC for the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_update_HLT_stats

Synopsis #include “DAQlogbook.h”

int DAQlogbook_update_HLT_stats(unsigned int run, char *LDC,
unsigned long hltAccepts, unsigned long hltPartialAccepts,
unsigned long hltOnly, unsigned long hltRejects, unsigned
long *hltAcceptsPerTriggerClass, unsigned long
*hltPartialAcceptsPerTriggerClass, unsigned long
*hltOnlyPerTriggerClass, unsigned long
*hltRejectsPerTriggerClass)

Description Update the HLT decisions per HLT LDC (stored in the logbook_stats_HLT_LDC
table) and per trigger class (stored in the logbook_trigger_classes table) for
the given run.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_add_comment

Synopsis #include “DAQlogbook.h”

int DAQlogbook_add_comment(unsigned int run, const char
*title, const char * const comment,...)
ALICE DAQ and ECS manual

Logbook Daemon 483
Description Insert a new Log Entry of class PROCESS on the logbook_comments table. The
only inserted fields are run, class, title and comment.

The run parameter is optional.

Returns Upon successful completion, this function returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

24.4 Logbook Daemon

The logbookDaemon is a daemon process that extracts data concerning the ALICE
magnets and the LHC configuration published by the DCS via DIM and inserts it in
the DB at start of run. The subscribed DIM services and the corresponding DB
fields are listed in Table 24.30.

Additionally, it also provides a publish mechanism (via DIM) to notify Start of Run
and End of Run events of partitions and detectors, thus avoiding the need from the

Table 24.30 logbookDaemon DIM services and DB fields relationship.

DIM Service DB Field

DCS_GRP_L3MAGNET_CURRENT L3_magnetCurrent field of the
logbook table

DCS_GRP_DIPOLE_CURRENT Dipole_magnetCurrent field of
the logbook table

DCS_GRP_L3MAGNET_POLARITY No field, this value is used to com-
plete the value provided by the
DCS_GRP_L3MAGNET_CURRENT
service

DCS_GRP_DIPOLE_POLARITY No field, this value is used to com-
plete the value provided by the
DCS_GRP_DIPOLE_CURRENT ser-
vice

ALICEDAQ_LHCMachineMode beamType field of the logbook table

ALICEDAQ_LHCBeamEnergy beamEnergy field of the logbook
table

ALICEDAQ_LHCFillNumber LHCFillNumber field of the log-
book table

ALICEDAQ_LHCTotBunchInteract LHCTotalInteractingBunches
field of the logbook table

ALICEDAQ_LHCTotBunchNotInteractBea
m1

LHCTotalNonInteractingBunch
esBeam1 field of the logbook table

ALICEDAQ_LHCTotBunchNotInteractBea
m2

LHCTotalNonInteractingBunch
esBeam2 field of the logbook table
ALICE DAQ and ECS manual

484 The ALICE Electronic Logbook
�

different online subsystems processes to constantly poll the DB. The available DIM
services are listed in Table 24.31.

24.5 Tools

Below is a list of the available command-line tools providing access to the
eLogbook’s repository.

insert_file

Synopsis insert_file HOSTNAME USERNAME PASSWORD DATABASE COMMENTID
FILEID FILENAME SIZE TITLE CONTENT_TYPE

Description Insert a file in the logbook_files table attached to an already existing Log Entry.

Parameters:

Table 24.31 logbookDaemon run events DIM services

DIM Service Description

/LOGBOOK/SUB-
SCRIBE/ECS_SOR_${PART}

ECS Start of Run per partition
(replacing ${PART} by the parti-
tion name)

/LOGBOOK/SUBSCRIBE/ECS_SOR_${DET} ECS Start of Run per detector
(replacing ${DET} by the 3-letter
detector code)

/LOGBOOK/SUB-
SCRIBE/ECS_EOR_${PART}

ECS End of Run per partition
(replacing ${PART} by the parti-
tion name)

/LOGBOOK/SUBSCRIBE/ECS_EOR_${DET} ECS End of Run per detector
(replacing ${DET} by the 3-letter
detector code)

/LOGBOOK/SUB-
SCRIBE/DAQ_SOR_${PART}

DAQ Start of Run per partition
(replacing ${PART} by the parti-
tion name)

/LOGBOOK/SUB-
SCRIBE/DAQ_SOR_${DET}

DAQ Start of Run per detector
(replacing ${DET} by the 3-letter
detector code)

/LOGBOOK/SUB-
SCRIBE/DAQ_EOR_${PART}

DAQ End of Run per partition
(replacing ${PART} by the parti-
tion name)

/LOGBOOK/SUB-
SCRIBE/DAQ_EOR_${DET}

DAQ Start of Run per detector
(replacing ${DET} by the 3-letter
detector code)
ALICE DAQ and ECS manual

Tools 485
• HOSTNAME: MySQL server hostname.

• USERNAME: MySQL username.

• PASSWORD: MySQL password.

• DATABASE: MySQL database name.

• COMMENTID: ID of the Log Entry to which the file should be attached to
(corresponding to the commentid field of the logbook_files table.

• FILEID: ID of the file (corresponding to the fileid field of the
logbook_files table.

• FILENAME: full filename (including path).

• SIZE: file size in bytes.

• TITLE: file title.

• CONTENT_TYPE: file Content Type.

Returns Upon successful completion, this command returns a value of zero. Otherwise, 1
will be returned.

logbookCloseRun

Synopsis logbookCloseRun RUNNUMBER

Description Close a run not properly terminated (“zombie” run), calling the
DAQlogbook_update_EndRun function of the C API.

Parameters:

• RUNNUMBER: Run number.

Returns Upon successful completion, this command returns a value of zero. Otherwise, 1
will be returned.

logbookGetTriggerInfo

Synopsis logbookGetTriggerInfo RUNNUMBER

Description Fetche and print the trigger information related with the given run.

Parameters:

• RUNNUMBER: Run number.

Returns Upon successful completion, this command returns a value of zero. Otherwise, 1
will be returned.
ALICE DAQ and ECS manual

486 The ALICE Electronic Logbook
�

logbookShellAPI

Synopsis logbookGetTriggerInfo -c COMMAND [-r RUN] [-v] [-h]

Description Fetche and print information related with a specific run.

Parameters:

• -c COMMAND: defines which information should be printed. COMMAND can be
one of:

• getRuntype: prints the ECS run type.

• getActiveGDCs: prints the IDs of the active GDCs.

• getActiveLDCs: prints the IDs of the active LDCs.

• getActiveDDLs: prints the IDs of the active DDLs.

• -r RUN: Run number. If not provided, the run number is taken from the
DATE_RUN_NUMBER environment variable.

• -v: execute in verbose mode.

• -h: print help.

Returns Upon successful completion, this command returns a value of zero. Otherwise, an
error code with a value equal to the line number where the error occurred will be
returned.

DAQlogbook_dim_gateway

Synopsis DAQlogbook_dim_gateway -s DIM_SERVICE -m DIM_MODE [-o]

Description Implement an interface between DIM and the eLogbook. Received messages are
inserted as Log Entries.

Parameters:

• -s DIM_SERVICE: DIM service name.

• -m DIM_MODE: defines the operation mode. DIM_MODE can be one of:

• subscribe: subscribe to external server service and insert a Log Entry at
each service update.

• command: create a DIM command service and insert a Log Entry at each
remote DIM client command execution.

• -o: don’t run as a daemon (by default, the command will run as a daemon).

Returns Upon successful completion, this command returns a value of zero. Otherwise, -1
will be returned.
ALICE DAQ and ECS manual

Graphical User Interface 487
24.6 Graphical User Interface

24.6.1 Overview

The eLogbook’s Web-based GUI (available at https://cern.ch/alice-logbook) was
developed using modern Web technologies, including PHP5, Javascript and
Cascading Style Sheets (CSS). It is hosted on an Apache web server and can be
accessed from the experimental area (inside the experiment's technical network),
the CERN General Purpose Network (GPN) and the internet.

24.6.2 Authentication and Authorization

Authentication is implemented via the CERN Authentication central service,
providing Single Sign On (SSO) and removing the effort of authenticating the users
from the eLogbook software. This way, when a user tries to access the GUI, he is
redirected to the CERN Login page where it has to provide his credentials. If
successful, he is then redirected back to the GUI.

Authorization is implemented in the GUI with 5 different levels of privileges:

• NONE: no access the GUI

• READ: read-only access

• WRITE: read/write access (e.g. can write Log Entries)

• ADMIN: same as previous + can grant WRITE privileges

• SUPER: same as previous + can grant ADMIN privileges

At the first login, the user’s details are stored in the logbook_users table.
Additionally, READ privilege is given by default.

24.6.3 Features

Below is a brief description of the main features of the eLogbook’s GUI.

24.6.3.1 Run Statistics

The Run Statistics section provides users access to both data-taking statistics and
conditions, ranging from event and data rates to trigger configurations and LHC
parameters. It is presented in a tabular view, with different subsections grouped in
individual tabs.

Given the number of available fields, some tabs allow users to select which fields
should be displayed.

Additionally, there’s an Overview tab which allows users to aggregate some of the
data-taking statistics by different criteria (such as number of detectors or ECS
partition) or as a function of time.
ALICE DAQ and ECS manual

488 The ALICE Electronic Logbook
�

24.6.3.2 Run Details

The Run Details section provides users access to all the available information
concerning a specific run, including infoLogger messages and AMORE
histograms.

24.6.3.3 Log Entries

The Log Entries section allows users to read or create reports related to the ALICE
operations. The inserted Log Entries can have attached files, with thumbnails being
created for image files. Several view modes are available, ranging from “1 line per
Log Entry” compressed views to expanded and full views. These reports can
belong to zero, one or several logical groups denominated Subsystems. Users can
also reply to existing Log Entries, thus creating a thread.

To be able to insert new Log Entries, a user needs to have at least the WRITE
privilege.

24.6.3.4 Announcements

Announcements are special Log Entries which should be used to broadcast short
messages of general interest to the ALICE Collaboration. Although appearing as a
normal Log Entry in the Log Entries section, an announcement is also displayed in
the Big Screen View page and in the ALICE Live public website.

When inserting a new announcement, users must set a validity timestamp, thus
defining until when should the messages be displayed.

As for normal Log Entries, a user needs to have at least the WRITE privilege to
create new announcements.

24.6.3.5 Automatic Email Notification

The eLogbook allows an automatic email notification to be sent every time a new
Log Entry is inserted. There are 2 possible configurations:

• Global: an email is sent for every inserted Log Entry.

• Per Subsystem: an email is sent for every inserted Log Entry belonging to a
given Subsystem. The email address is defined in the email field of the
logbook_subsystems table, where additional configuration parameters can
also be defined.

24.6.3.6 Search Filters

One of the main goals of the eLogbook is to allow the members of the ALICE
Collaboration to search for runs that match their criteria. To accomplish that, a
filtering mechanism has been implemented in the Run Statistics section, allowing
users to set a search filter for each available field. Filters corresponding to fields
displayed on different tabs can be combined, although they can only be set or
modified when in the corresponding tab.

Some filters have predefined values available (defined in the logbook_filters
table), thus allowing easy access to common queries.
ALICE DAQ and ECS manual

Graphical User Interface 489
The search filters are also available in the Log Entries section, although they cannot
be combined with the ones from the Run Statistics section.

24.6.3.7 Export Run Statistics

The eLogbook allows users to export the information displayed in the Run
Statistics section in 3 different formats:

• TXT: text format, with 1 line corresponding to 1 run and values separated by
semicolons.

• XML: XML format, with the root element depending on the exported tab and
each <RUN> element corresponding to 1 run.

• EXCEL: spreadsheet format, with 1 row corresponding to 1 run.

Additionally, users can choose different export options, such as include/exclude
headers (for easier parsing) or exporting only the run numbers.
ALICE DAQ and ECS manual

490 The ALICE Electronic Logbook
�

ALICE DAQ and ECS manual

ALICE DAQ and ECS manual
25
LHC machine
monitoring

This chapter describes the tool developed to read information about the beams
delivered by the LHC machine and publishing them on the ALICE DIM
(DISTRIBUTED INFORMATION MANAGEMENT) server to be stored into the electronic
logbook at the start of each run. The LHC values are published by means of the DIP
(DATA INTERCHANGE PROTOCOL) system, which allows relatively small amounts of
soft real-time data to be exchanged between very loosely coupled heterogeneous
systems. A Java application has been developed to perform an off-line cross-check
between the values stored into the ALICE logbook by means of the DIP/DIM
process and the ones stored into the LHC Logging Database.

25.1 DATA INTERCHANGE PROTOCOL (DIP) 492

25.2 LHC beam info: DIP client/DIM server 496

25.3 LHC beam info: off-line cross-check 498

492 LHC machine monitoring
�

25.1 DATA INTERCHANGE PROTOCOL (DIP)

25.1.1 The DIP architecture

DIP is an information distribution service, and as such it may be profitably compared to
subscribing to a newspaper or magazine (Figure 25.1).

If a person wants to receive a magazine on a regular basis, he may subscribe to it by giving
its name to the supplier.
Whenever a new edition of that magazine is published, the person will receive a copy of it.
If the person did not receive an edition when he was expecting one, he will contact the
supplier who will give him one (ideally).
The person is of course not restricted to subscribing to one magazine only or just to
magazines from a single publisher. The person needs only to provide the supplier the names
of the publications he is interested in (he does not need to know who or where the publisher
is) and he will receive new editions of the requested publication as they become available.
DIP is essentially playing the role of the Supplier in the above scenario. There is one notable
difference between DIP and the magazine scenario: while a magazine is published on a
periodic basis, this is not necessarily the case with DIP publications which may contain
event based data which is updated as and when the event(s) occur.
Important components in the DIP architecture are publishers, subscribers and publications
as shown in the diagram of Figure 25.2.

Figure 25.1 Information distribution service of a newspaper or magazine
ALICE DAQ and ECS manual

DATA INTERCHANGE PROTOCOL (DIP) 493
In the above diagram we see that DIP servers and clients act as the Publishers and
Subscribers. The arrows show the flow of information between the producer (Data source)
and Subscriber. The dark (green) arrows indicate that some action is required by the writer
of the Publisher or Subscriber in order to make the information flowing. The light-coloured
arrows are used where the flow of information between components is handled by DIP. A
description of the components identified in the above diagram follows:

• Publisher: a producer of DIP data. A Publisher is responsible for the definition of
the structure, the content and the provision of the DIP data to its Subscribers.
• Subscriber: a client of DIP data.
• Data source: this represents the source of the data that is to be sent via DIP. It may be
internal or external to the DIP server. The DIP server is responsible for accessing the data
source and writing it out to DIP through the Publication when it is needed (e.g. when the
value obtained from the data source has changed).
• Publication: is a named object that represents an atomic piece of data published in DIP.
The writer of the server must write the code that obtains the data from the Data Source and
writes it into the publication object. A client subscribes to the publication by providing DIP
with the publications name.
• DIP: provides the mechanism by which data is passed from the Publisher to the
Subscriber (via the publication object), running on a DIP NAME SERVER (DNS).
Moreover, the role of the DNS is to maintain the list of Publications available, and
connect the Subscribers to the Publishers.
• Subscription: an object given to the client by DIP when that client subscribes to a
publication. With this object a client may request the most recently published value of the
publication or unsubscribe from a publication the client had previously subscribed to.
• SubscriptionListener: would be the equivalent of a magazine reader in our analogy. The
SubscriptionListener acts as a wrapper, containing several callbacks. The most important of
which handles data from those publications subscribed to when it arrives. The dark (green)
arrow going out from the SubscriptionListener indicates that the implementer of the client
must provide some code in the SubscriptionListener to do something with the data when it
arrives at the Listener (i.e. display it on a console).

The DIP communication is based within LHC TECHNICAL NETWORK (TN), as shown
in the Figure 25.3, which shows the DIP organization deployed in 2008, with a

Figure 25.2 DIP architecture.
ALICE DAQ and ECS manual

494 LHC machine monitoring
�

central DNS in the TN and various Publishers and Subscribers communicating
together across domains. This DNS is maintained by the IT/CO group.

There are some important characteristics about DIP one should be aware of:

• the Publisher and its Subscribers don’t know each other explicitly. The DIP
protocol, actually the DNS, connects the Subscribers with their Publishers of
interest. A Subscriber knows at any time the status of its connections with the
Publishers;
• a Publication is a structured container of atomic data. It is a consistent item and
the Subscribers cannot subscribe only to a subset of its content;
• there is no filtering mechanism provided by DIP itself, i.e. once subscribed to a
Publication, the Subscriber will receive all its updates;
• the Publisher has full control over data content, quality and timestamp;
• there is a notion of “data contract” between the Publishers and their Subscribers;
a Publisher responsible for a set of Publications is not allowed to change online the
structure of its Publications, once they have been made available for potential
Subscribers;
• there are no particular security mechanisms implemented in the DIP protocol; for
example, a Subscriber has no means to authenticate the source of the data it
receives; similarly, the DIP protocol does not offer a Publisher the possibility to
restrict access to a set of authenticated Subscribers; another example, the
Publications’ names are not nominative; in other words, when a Publisher stops,
the Publications’ names it was using are from then on freely available to other
Publishers;
• there is no feedback to a Publisher that the data published actually reached its
Subscribers (also known as “one-way” communication); hence there is no
retransmission in case of a data delivery issue.

Figure 25.3 Cross–domain DIP communication on the TN.
ALICE DAQ and ECS manual

DATA INTERCHANGE PROTOCOL (DIP) 495
25.1.2 Setting up development environment

The distributions and a tutorial of DIP can be obtained from IT/CO’s DIP support web page
(http://wikis.web.cern.ch/wikis/display/EN/DIP+and+DIM). Two
versions are available, DIP for Java and DIP for C++ (as zip files). Both these distributions
run on the Windows XP/2000 and Linux platforms.

For C++ users:

• Under Linux

o Be sure to modify your make file to include the following directories,
<BASE>/dip/include/dip and <BASE>/dip/include/dim, in your
include search path.

o Set the environment variable LD_LIBRARY_PATH to include the
directory <BASE>/dip

For Java users:

• Remember to include <BASE>\dip\dim.jar and <BASE>\dip\dip.jar in
the class path when you compile and run your DIP applications. Additionally,
ensure that the shared libraries (libdim.so and libjdim.so for Linux) are
reachable.

Before starting a DIP based application, be sure to set the environment variable
DIM_DNS_NODE to vodip01.cern.ch and DIM_DNS_PORT to 2506. This
provides the application with the location of the name server that is required for
DIP to run correctly.

25.1.2.1 DIP installation for C++ user under Linux

Download the released tar file for Linux 32 bit (Linux tarball 32bits) from the DIP
Web site and save it in a temporary directory. Create the dip directory on your
<BASE> account directory (eg. /home/dip_user) and untar the file:

Create the bash script in Listing 25.1 (called dipEnv.sh) in your <BASE>/dip
directory, to set the environment variables need to develop, compile and run the
DIP applications.

1: <BASE> > mkdir dip
2: <BASE> > cd dip
3: <BASE>/dip > cp /tmp/DIP_tar_file.tar .
4: <BASE>/dip > tar -xvf DIP_tar_file.tar

Listing 25.1 dipEnv.sh: environmental setup

1: #!/bin/bash
2: export CLASSPATH=<BASE>/dip/linux/lib/dip.jar
3: export

LD_LIBRARY_PATH=<BASE>/dip/lib:/opt/dim/linux:$LD_LIBRARY_PATH
4: export DIM_DNS_NODE=vodip01.cern.ch
5: export DIM_DNS_PORT=2506
6: export DIM_HOST_NODE=IPaddress_of_DIM_host_node
ALICE DAQ and ECS manual

496 LHC machine monitoring
�

Check the connection with the DIP NAME SERVER (vodip01.cern.ch), which
belongs to the TN. If it is not accessible, this means that your host does not belong
to the TN. Request CERN-IT to include your host in the TN.

This check can be done launching, in a terminal, the Java DIP browser from your
<BASE> directory with the bash script shown in Listing 25.2.

If it does not start, check if Java real-time with a version greater than 1.4.2-16 is
installed (j2re.1.4.2-16) in the directory /usr/java.

25.2 LHC beam info: DIP client/DIM server

To retrieve the information on the beams a DIP client has been developed
(LHCClient.cpp) that subscribes to the following publications:

• dip/acc/LHC/Beam/Energy

• dip/acc/LHC/Beam/IntensityPerBunch/Beam1

• dip/acc/LHC/Beam/IntensityPerBunch/Beam2

• dip/acc/LHC/RunControl/BeamMode

• dip/acc/LHC/RunControl/MachineMode

• dip/acc/LHC/RunControl/FillNumber

• dip/acc/LHC/RunControl/RunConfiguration

• dip/acc/LHC/RunControl/CirculatingBunchConfig/Beam1

• dip/acc/LHC/RunControl/CirculatingBunchConfig/Beam2

This application has been developed in <BASE>/dip/linux/test, in which you
can find the makefile to compile the C++ code and produce the executable.

The information collected from the above DIP publication, after a processing step,
is published on the ALICE DCS DIM server (alidcsdimdns.cern.ch), from
which a logbook daemon takes it and stores it into the ALICE Logbook at start of
each run. The DIM publications subscribed to by the logbook daemon are the
following:

• ALICEDAQ_LHCBeamMode: char (‘C’), ‘LHC Beam Mode (STABLE BEAMS,
INJECTION PROBE BEAM, ...)’

• ALICEDAQ_LHCBeamType: char (‘C’), ‘Type of collisions (‘p-p’,’Pb-Pb’)’

• ALICEDAQ_LHCBeamEnergy: float (‘F’), ‘Energy of the beam in GeV’

• ALICEDAQ_LHCFillNumber: int (‘I’), ‘LHC Fill Number’

Listing 25.2 runBrowser.sh: DIP browser launcher

1: #!/bin/bash
2: export CLASSPATH=<BASE>/dip/linux/lib/dip.jar
3: export

LD_LIBRARY_PATH=<BASE>/dip/lib:/opt/dim/linux:$LD_LIBRARY_PATH
4: java -jar <BASE>/dip/linux/tools/dipBrowser.jar
ALICE DAQ and ECS manual

LHC beam info: DIP client/DIM server 497
• ALICEDAQ_LHCTotalInteractingBunches: int (‘I’), ‘Number of Interacting
Bunches’

• ALICEDAQ_LHCTotalNonInteractingBunchesBeam1: int (‘I’), ‘Number of
Non-Interacting Bunches in Beam 1’

• ALICEDAQ_LHCTotalNonInteractingBunchesBeam2: int (‘I’), ‘Number of
Non-Interacting Bunches in Beam 2’

• ALICEDAQ_LHCBetaStar: char (‘C’), ‘LHC Beta* in meters’

• ALICEDAQ_LHCInstIntensityInteractingBeam1: float (‘F’),
‘Instantaneous Intensity for Interacting Bunches in Beam 1 in num. of charged
particles’

• ALICEDAQ_LHCInstIntensityInteractingBeam2: float (‘F’),
‘Instantaneous Intensity for Interacting Bunches in Beam 2 in num. of charged
particles’

• ALICEDAQ_LHCInstIntensityNonInteractingBeam1: float (‘F’),
‘Instantaneous Intensity for Non-Interacting Bunches in Beam 1 in num. of
charged particles’

• ALICEDAQ_LHCInstIntensityNonInteractingBeam2: float (‘F’),
‘Instantaneous Intensity for Non-Interacting Bunches in Beam 2 in num. of
charged particles’

• ALICEDAQ_LHCFillingSchemeName: char (‘C’), ‘LHC Filling Scheme name
(‘Single_12b_8_8_8’, ‘150ns_152b_140_16_140_8bpi’,...)’

Other DIM publications are available for future applications:

• ALICEDAQ_LHCTotIntensityInteractingBeam1: float (‘F’), ‘Total
Intensity for Interacting Bunches in Beam 1 in num. of charged particles’

• ALICEDAQ_LHCTotIntensityInteractingBeam2: float (‘F’), ‘Total
Intensity for Interacting Bunches in Beam 2 in num. of charged particles’

• ALICEDAQ_LHCTotIntensityNonInteractingBeam1: float (‘F’), ‘Total
Intensity for Non-Interacting Bunches in Beam 1 in num. of charged particles’

• ALICEDAQ_LHCTotIntensityNonInteractingBeam2: float (‘F’), ‘Total
Intensity for Non-Interacting Bunches in Beam 2 in num. of charged particles’

All these values are sent to the infoBrowser every minute to be stored during the
run.

The DIP client/DIM server process continuously runs and, if it stops for any
reason, in less than one minute, is restarted automatically thanks to the execution of
the bash script in Listing 25.3, (called restartLHCClient.sh and stored in
<BASE>/dip directory) through the crontab service of Linux. The script executes
every minute the check of the PID (PROCESS IDENTIFICATION) value of the process; if
it is ‘0’, it sets the environment and starts the process.
ALICE DAQ and ECS manual

498 LHC machine monitoring
�

25.3 LHC beam info: off-line cross-check

The non reliability of DIP publications has been proven so it is necessary to perform
an off-line cross-check of values published by the DIP/DIM process and stored
online by the logbook deamon. To do this, a Java application has been developed in
order to perform an off-line cross-check between the values stored in the ALICE
logbook (a MySQL database) and the ones stored in the LHC Logging Database,
the system developed to permanently store and manage the measured values of the
most important parameters, configurations and working characteristics of the all
accelerator parts (PS, SPS, LINAC, LHC, etc), and experiments.

The Java application uses the logging-data-extractor-client API,
developed by the LHC Logging Database team. The application must be
registered to have access to the data. To register a new application, the developing
team of the LHC Logging Database has been contacted
(be-dep-co-dm@cern.ch) and a meeting has been organized.

During this discussion both high-level views on the analysis/application objectives
and also technical/implementation details have been addressed. As soon as the
new application is registered and a sample method to access the data is sent, it is
possible to start the development of the application to manage the data extracted
by the LHC Logging Database.

The following Java packages are needed to develop, compile and run the
applications to extract the information from LHC Logging Database:
jdk1.6.0_20 and jre1.6.0_20 in /usr/java, and, for the specific Java
application developed for the off-line cross-check, also the Java MySQL
connector package mysql-connector-java-5.1.13 is needed, to retrieve
and eventually update the information in the ALICE logbook.

Listing 25.3 restartLHCClient.sh: automatic check and restart of DIP client

1: #!/bin/bash
2: #daemon name:
3: DIPDIMPROCESS="DIP_client_process_name"
4: #pgrep command path:
5: PGREP="/usr/bin/pgrep"
6: #find the PID of daemon
7: $PGREP ${DIPDIMPROCESS}
8: #check if the daemon is active or not; if not, restart the daemon
9: if [$? -ne 0] then
10: # ================== Setup for DATE =========================
11: [-d /dateSite] && export DATE_SITE=/dateSite
12: if [-f /date/setup.sh -a -d /dateSite]; then
13: export DATE_ROOT=/date
14: . /date/setup.sh
15: fi
16: # ================== Setup for DIP/DIM ======================
17: export DIM_HOST_NODE=IPaddress_of_DIM_host_node
18:
19: . <BASE>/dip/dipEnv.sh
20: cd <BASE>/dip/linux/test
21: ./$DIPDIMPROCESS &
22: fi
ALICE DAQ and ECS manual

LHC beam info: off-line cross-check 499
By means of the Eclipse’s software (‘Eclipse IDE for Java Developers’ package
from http://www.eclipse.org/downloads/) it is possible to create, modify
and test the project of the application with the Java code and classes organized in
the specified user workspace (<BASE>/workspace/projectName).

In <BASE>/workspace directory of the same host on which the DIP/DIM process
runs, the Java project LHCLoggingProject has been developed to perform the
daily off-line cross-check of the previous 24 hours of data taking. It needs to have
the appropriate permissions to access and update the values in the ALICE logbook.

The Java application, named ALICEDataExtractionACR.java, connects to and
extracts the information from the LHC Logging Database stored in the last 24
hours of the day before, then it connects to and extracts the beam information
stored in the ALICE logbook in the same time range, and for each run and for each
variable it makes the comparison between the two values. If they are different, an
update of ALICE logbook value is applied with the LHC Logging ones. Moreover
the last value of each variable has been stored in specific files to know the starting
point status for the next check.

Listing 25.4 ACRLHCLoggingCheck.sh: automatic start of Java application for the off-line cross-check.

1: #!/bin/bash
2: export JAVA_HOME=/usr/java/jdk1.6.0_20
3: export PATH=$JAVA_HOME/bin:$PATH
4:
5: JAVA_HOME_JRE=/usr/java/jre1.6.0_20
6: JAVA_PROJECT_DIR=/home/alicedaq/workspace/LHCLoggingProject
7: JAVA_LOG_DIR=/tmp/LogbookCrossCheck
8:
9: cd $JAVA_PROJECT_DIR
10: CLASSPATH=""
11: for i in lib/*.jar; do

CLASSPATH=${CLASSPATH}:/home/alicedaq/workspace/LHCLoggingProject
/$i; done;

12: export
CLASSPATH=/home/alicedaq/workspace/LHCLoggingProject/build/bin:/u
sr/java/jre1.6.0_20/lib/ext/mysql-connector-java-5.1.13-bin.jar${
CLASSPATH}

13: cp bin/* build/bin/
14: cd src/java
15: javac -Xlint:deprecation ALICEDataExtractionACR.java
16: cp ALICEDataExtractionACR.class ../../bin/
17: cp ALICEDataExtractionACR.class ../../build/bin/
18:
19: DATETOCHECK=`date --date="now -1 day" +%F`
20: echo ALICE cross-check for the date: $DATETOCHECK
21:
22: JAVAEXEC="$JAVA_LOG_DIR/JavaExec/$DATETOCHECK.txt"
23:
24: cd $JAVA_LOG_DIR/JavaExec/
25: for i in $(ls -rt)
26: do
27: DATE=${i:0:10}
28: echo "$i --> date: $DATE"
29: LASTDATECHECKED=$DATE
30: done
31: MAKECHECK=1
32: echo Last date checked: $LASTDATECHECKED
33: if [$DATETOCHECK = $LASTDATECHECKED] && [-s $JAVAEXEC] ; then
34: MAKECHECK=0;
35: else
36: NEXTDAY="$LASTDATECHECKED +1 day"
37: NEXTDATETOCHECK=`date --date="$NEXTDAY" +%F`
38: fi
39:
40: echo Make check flag: $MAKECHECK
ALICE DAQ and ECS manual

500 LHC machine monitoring
�

41: cd $JAVA_PROJECT_DIR/src/java
42:
43: if [$MAKECHECK = 1] ; then
44: echo "Make cross-check from $NEXTDATETOCHECK to $DATETOCHECK"
45: ENDDATE=$DATETOCHECK
46: STARTDATE=$LASTDATECHECKED
47: DATE=$STARTDATE
48: echo Start date: $NEXTDATETOCHECK
49: echo End date: $ENDDATE
50: DAY=1
51:
52: while [$DATE != $ENDDATE]; do
53: CURDATE="$STARTDATE +$DAY day"
54: echo date command: $CURDATE
55: DATETOCHECK=`date --date="$CURDATE" +%F`
56: DATE=$DATETOCHECK
57: echo The date to check is $DATETOCHECK
58: let DAY=$DAY+1
59:
60: JAVAEXEC="$JAVA_LOG_DIR/JavaExec/$DATETOCHECK.txt"
61: echo Java executed file name: $JAVAEXEC
62:
63: if [! -e "$JAVAEXEC"] ; then
64:
65: echo Make the check for day $DATETOCHECK
66: cp /tmp/LogbookCrossCheck/lastHX:AMODE.txt

/tmp/LogbookCrossCheck/NextLastBackup/nextlastHX:AMODE.txt
67: cp /tmp/LogbookCrossCheck/lastHX:BMODE.txt

/tmp/LogbookCrossCheck/NextLastBackup/nextlastHX:BMODE.txt
68: cp /tmp/LogbookCrossCheck/lastHX:ENG.txt

/tmp/LogbookCrossCheck/NextLastBackup/nextlastHX:ENG.txt
69: cp /tmp/LogbookCrossCheck/lastHX:FILLN.txt

/tmp/LogbookCrossCheck/NextLastBackup/nextlastHX:FILLN.txt
70: cp

/tmp/LogbookCrossCheck/lastLHC.BQM.B1:FILLED_BUCKETS.txt
/tmp/LogbookCrossCheck/NextLastBackup/nextlastLHC.BQM.B1:FILLED_B
UCKETS.txt

71: cp
/tmp/LogbookCrossCheck/lastLHC.BQM.B2:FILLED_BUCKETS.txt
/tmp/LogbookCrossCheck/NextLastBackup/nextlastLHC.BQM.B2:FILLED_B
UCKETS.txt

72:
73: java ALICEDataExtractionACR $DATETOCHECK
74:
75: else
76:
77: if [! -s $JAVAEXEC] ; then
78:
79: echo Make again the check
80: cp

/tmp/LogbookCrossCheck/NextLastBackup/nextlast*.txt
/tmp/LogbookCrossCheck/

81: java ALICEDataExtractionACR $DATETOCHECK
82: fi
83: fi
84: done
85: else
86: echo "Date $LASTDATECHECKED already cross-checked!"
87: fi
88:
89: cd $JAVA_PROJECT_DIR
ALICE DAQ and ECS manual

�

Part VII

The Transient
Data Storage
December 2010

ALICE DAQ Project
TDS

�

ALICE DAQ and ECS manual
26
The Transient
Data Storage

This chapter describes the Transient Data Storage as it has been deployed at
ALICE and its associated packages.

26.1 Introduction. 504

26.2 The Transient Data Storage architecture 504

26.3 The TDSM. 504

504 The Transient Data Storage
�

26.1 Introduction

ALICE data have to be recorded on the Permanent Data Storage (PDS). ALICE
chose the CERN Adanced STORage manager (CASTOR) as support for the PDS.
The decision was taken to implement in the ALICE counting room a Transient Data
Storage (TDS) area where files would be stored at the output of the DAQ. The TDS
would ensure low latencies and high reliability, enough to keep writing data
whatever the status of the PDS is. A dedicated software package was developed to
control the TDS: the Transient Data Storage Manager (TDSM). The target of the
TDSM is to assign disks for writing to the GDCs, move the data files to the PDS and
trigger their registration into AliEn. We will herein review the architecture and the
features of both the TDS and the TDSM.

26.2 The Transient Data Storage architecture

The Transient Data Storage is organized in sets of hard disks, grouped in RAID6,
realized as Disk Arrays (DAs). Several FibreChannel switches connect the DAs to
the data writers (the GDCs) and the data readers (the TDSM Movers, hosts that
handle the transfer of files from TDS to PDS).

Transfers in and out of the TDS disks work better when crossing fewer
FibreChannel switches. For this reason, switches and hosts are organized in groups,
a concept that helps optimizing the data traffic by keeping it (if possible) within the
same group. In this model, a “group” is equivalent to one FibreChannel switch.

26.3 The TDSM

The TDS needs careful handling on order to:

1. Write data in ROOT format on the TDS with the smaller possible impact on the
data acquisition procedure.

2. Synchronize the use of the disks belonging to the TDS to make them work at the
best of their capabilities.

3. Efficiently migrate the data from the TDS to the PDS and register it in AliEn.

An example of the architecture of the TDSM is show in Figure 26.1. Here the data
flows top to bottom, GDCs to TDS to CASTOR. Three group of disks have been
highlighted within the TDS. Three volumes are used for writing (exclusive mode),
while three other volumes are selected for reading in shared mode. Write volumes
are critical as they must not slow down the DAQ: for this reason they are not
shared. Read volumes, on the other hand, can experience latencies without
effecting the migration procedure. It is mandatory that disks are not used for
simultaneous write and read operations, which would make both operations
extremely slow.
ALICE DAQ and ECS manual

The TDSM 505
Outside the data flow we can see:

a. the TDSM Manager (left side): a node that coordinates all activities in the TDSM
and keeps the liaison with the GDCs and with the CTP;

b. the TDSM configuration database which contains shared parameters, status
variables, historic records and shared procedures;

c. the DAQ logbook, used to record the status of each file and to provide the
necessary assistance to the TDSM operator;

d. the AliEn spooler, which runs on a dedicated node, talking to the DAQ network
and to the CERN General Purpose Network (GPN), where the AliEn file
catalogue gateway is hosted.

The small scheme on the top-right of the figure shows the state transition scheme
that applies to the data disks.

The central component of the TDSM is the configuration and control database. All
the communications between actors are made through this database (dashed lines).
Physically this database can run on any machine. It uses a separate set of tables in
order to allow run independently from any other component (e.g. migrate data
while the DAQ is under maintenance). The location of the TDSM database is
defined in the DAQ/ECS configuration database.

The TDS and the TDSM can be monitored via dedicated TDSM statistics that
reports the throughputs and timings grouped by several criterias (machines,
groups, volumes). This allows spotting and solving problems such as faulty disk
volumes or misbehaving TDSM File Movers.

The TDSM package provides a set of utilities for the operation of the TDS. These
provide functions such as disabling a faulty volume, excluding an un-recoverable
volume from the setup, off-loading a volume being rebuilt, disabling faulty File

Figure 26.1 Architecture of the TDSM (example).

emptying

full

filling

CASTOR

TDS

GDC GDC GDC
Feedback
to the CTP

TDSM
File

Mover

TDSM
File

Mover

TDSM
Manager

DAQ network

CERN
GPN

MSS
network

AliEn
spooler

TDSM
configuration
& control DB

GDC

TDSM
File

Mover

TDSM
File

Mover

free

disabled

AliEn

DAQ
logbook
ALICE DAQ and ECS manual

506 The Transient Data Storage
�

Movers and so on. All these operations can be done at any time, regardless from the
concurrent activities in ALICE, without stopping the TDSM and without changing
the configuration database.

Other TDSM utilities allow more complex operations, such as re-organizing the
hardware resources or assigning new nodes to the set. These operations usually
require stopping and restarting the TDSM operation and therefore cannot be done
when ALICE is in a running state.

In order to make good use of the hardware resources in ALICE, the TDSM monitors
the occupancy of the TDS. Whenever this exceeds a pre-defined threshold, a
dedicated script (named “TDS Full” script) is called. Actions taken by this script
can be, for example, pausing the data acquisition process or changing the trigger
profile in order to reduce the detectors data rates (e.g. allowing only rare trigger
with lower throughput). A second script, named “TDS empty” script, is called
whenever the TDS resources go below a second pre-define threshold, to revert
whatever action was taken by the “TDS Full” script.

For detailed instructions on how to re-organize, re-configure, run and control the
TDSM, refer to the ALICE DAQ WIKI.

26.3.1 The TDSM and the DAQ

The TDSM handles the attribution of resources to the DAQ as follows. At start of
run, the mStreamRecorder process checks if the write volume declared for this
particular run is available. If not, it requests a volume to the TDSM and waits for
the directory to be assigned. When the TDSM completes the transaction, it creates a
symbolic link which is detected by mStreamRecorder and used to create the
output ROOT files.

During the run, the mStreamRecorder process checks at regular intervals the
presence of the write directory. Whenever the write volume changes state (e.g.
when it gets full), the TDSM removes the symbolic link and creates a new one
pointing to a newly assigned volume. The mStreamRecorder process detects this
change, closes the current output file and creates a new one, ensuring the transition
to the new volume.

After a pre-defined period of inactivity, the TDSM changes the status of the write
volumes and triggers their migration. This avoids stalling volumes for too long at
the end of a run.

The operator can, at any time, trigger the migration of the data files written by a
partition to the PDS. This is translated into a command for the TDSM that takes
care of changing the status of the write volumes. Please note that the recostruction
of a given run cannot be started as long as the run is not completed: therefore
triggering the migration of a run before the run is closed will not speed up the
reconstruction of the run itself (it will only make the data files available earlier to
the reconstruction process).

26.3.2 Size of the output files

The size of the output files written on TDS is a very important factor. The PDS
requests to handle big files, in order to optimize tape handling and packing. For
ALICE DAQ and ECS manual

The TDSM 507
this reason it is better not to request the migration of a run to PDS as long as the run
is not over. Smaller files increase the latency for their migration to PDS and their
recall from tape, while making tape handling less efficient and slower. At ALICE,
the size of the ROOT data files is specified in the configuration of
mStreamRecorder. Refer to the ALICE DAQ WIKI for more details on this
subject.

26.3.3 Links within the TDS and TDSM components

At Point 2, all the TDS and TDSM components are inside the ALICE DAQ network
(to allow communication between hosts and databases). However, two channels
need to be open outside this network:

1. Data links to the PDS.

2. Communication links to AliEn.

Data links are allowed via firewalling commands on the Ethernet switches between
the TDS and the PDS. Communications with AliEn are done using hosts equipped
with two NICs, one connected to the DAQ network and one connected to whatever
network hosts the AliEn server (currently on GPN).

26.3.4 The AliEn spooler

There are two separate implementations for the AliEn spooler:

1. one or more DAQ-hosted machines running dedicated Offline software for the
registration;

2. one or more Offline-hosted machines handling the registration.

In the first architecture, the DAQ takes care of checking the health of the
registration process, of the AliEn spooler daemon and of the forward progress of
the procedure.

In the second architecture, currently in use in ALICE, the DAQ provides the needed
information to the gateway. This information is then handled by the Offline
software (which takes care of error handling, error recovery and forward progress
checking). Hot-swap between multiple nodes is performed in case of failures: the
operator is notified of the event, but no immediate corrective action is required as
long as there is at least one active gateway available.
ALICE DAQ and ECS manual

508 The Transient Data Storage
�

ALICE DAQ and ECS manual

�

Part VIII
References

�

ALICE DAQ and ECS manual
27
References

1. K. Aamodt et al. (ALICE Collaboration), J Instrum., 3, S08002 (2008).

2. ALICE Collaboration, ALICE Technical Design Report on Trigger, Data
Acquisition, High-Level Trigger, Control system, CERN/LHCC/2003-062.

3. C. Gaspar, A distributed Information Management System for the DELPHI
experiment at CERN, in Proc. of the IEEE Real Time Conference, Vancouver,
Canada, 1993.

4. J. Barlow et al., Run Control in Model: the State Manager, in Proc. of the 6th Conf.
on Real Time Computer Applications in Nuclear, Particle and Plasma Physics,
Williamsburg, VA, USA, 1989.

5. B. Franek and C. Gaspar, SMI++, An object oriented framework for designing
distributed control systems, IEEE Trans. Nucl. Sci. 45 (1998) 1946-1950.

6. http://dev.mysql.com/doc/mysql.

7. http://httpd.apache.org.

8. Apache Software Foundation, Hypertext PreProcessor, http://www.php.net.

9. J.P. Baud et al., CASTOR status and evolution, Proc. Conf. on Computing in High
Energy Physics, La Jolla, CA, USA, 24-28 March 2003 (SLAC, Stanford).

10. R. Brun and F. Rademakers, ROOT An object oriented data analysis framework,
Nucl. Instr. Meth. A389 (1997) 81-86.

11. ALICE Collaboration, ALICE Technical Design Report on Trigger, Data
Acquisition, High-Level Trigger, Control system, CERN/LHCC/2003-062,
41-108.

12. B. G. Taylor, LHC Machine Timing Distribution for the Experiments, in Proc. of
the 6th Workshop on Electronics for LHC Experiments, Cracow, Poland, 2000
(CERN 2000-010, Geneva, 2003).

13. Danny Cohen, On Holy Wars and a Plea for Peace, IEEE Computer, Oct. 1981,
48-54.

14. ALICE Collaboration, ALICE Technical Proposal, CERN/LHCC/1995-71.

15. R. Divià et al, Data Format over the ALICE DDL, Internal Note
ALICE-INT-2002-010 V5.1.

16. ALICE Collaboration, ALICE Technical Design Report on Computing,
CERN-LHCC-2005-018, 15-21.

17. ALICE Collaboration, ALICE Technical Design Report on Computing,

512 References
�

CERN-LHCC-2005-018, 27-30.

18. T. Oetiker, Round Robin Database tool, http://www.rrdtool.com, 2003.

19. http://cern.ch/alice-daq.

20. M. Boccioli, F. Carena and O. Pinazza, ALICE DCS Run Control Tool, DCS
Internal Note, 2010.
ALICE DAQ and ECS manual

List of Figures 513
List of Figures

Figure 1.1 DAQ architecture overview. 2
Figure 3.1 Streamlined unextended event format 15
Figure 3.2 Streamlined extended event format 16
Figure 3.3 Paged event logical format 17
Figure 3.4 Paged event first-level vector format 18
Figure 3.5 Collider mode event identification 19
Figure 3.6 Fixed target mode event identification 19
Figure 3.7 The full event format 32
Figure 3.8 Example of use of DATE event vectors 40
Figure 3.9 Example of complete paged event 41
Figure 4.1 DATE configuration database structure - main tables. 45
Figure 4.2 The initial editDb view. 57
Figure 4.3 GDC cloning window. 57
Figure 4.4 LDC cloning window. 58
Figure 4.5 New equipment creation display.. 58
Figure 4.6 Equipment configuration display. 59
Figure 4.7 Detectors configuration display. 59
Figure 4.8 Triggers configuration display. 60
Figure 4.9 Membanks configuration display. 60
Figure 4.10 Event building rules configuration display. 61
Figure 4.11 Environment variables configuration display. 61
Figure 4.12 Environment variables configuration display showing user defined
variables. 62
Figure 4.13 Files configuration display. 62
Figure 4.14 Example of a DAQ system. 63
Figure 5.1 The DATE online monitoring, local and remote configurations . 86
Figure 5.2 The DATE offline monitoring 87
Figure 5.3 The DATE relayed monitoring 88
Figure 6.1 Main event loop executed by the readout process. 110
Figure 6.2 The generic readList concept of the readout process. . . . 115
Figure 7.1 Event identification mechanism of the RorcData equipment. 128
Figure 7.2 The software elements to handle the RORC device. 130
Figure 7.3 Example of one sub-event in paged event mode. 133
Figure 7.4 The data flow for an LDC with 3 RORC devices 140
Figure 7.5 The back-pressure algorithm. 147
ALICE DAQ and ECS manual

514 List of Figures
�

Figure 8.1 ALICE Trigger. 150
Figure 10.1 A schematic block-diagram of the mStreamRecorder. The legend is
shown at the top 168
Figure 11.1 The DATE infoLogger architecture 184
Figure 13.1 The EDM architecture. 205
Figure 14.1 The runControl system architecture. 213
Figure 15.1 Memory layout of physmem 241
Figure 17.1 The format of the CTP event data. 276
Figure 17.2 The format of interaction records. 277
Figure 17.3 TRIGGER-DAQ-HLT overall architecture. 278
Figure 17.4 DAQ-HLT interface schematic view. 279
Figure 17.5 DAQ-HLT Data Flow overview. 279
Figure 17.6 Data flow in the LDC in the DAQ system with HLT active. . 280
Figure 17.7 Interconnections between hltAgents. 282
Figure 18.1 ECS/DCS interface. 301
Figure 18.2 ECS/TRG interface. 302
Figure 19.1 The architecture of the ACT and its interfaces with the different on-
line systems and detectors. 306
Figure 19.2 ACT hierarchy. 307
Figure 19.3 Items activation status state diagram. 308
Figure 19.4 ACT workflow diagram. 310
Figure 19.5 ACT database schema. 311
Figure 22.1 DA framework architecture. 396
Figure 23.1 Schema of the main dependencies of AMORE. 406
Figure 23.2 The publisher-subscriber paradigm in AMORE. 406
Figure 23.3 Description of a module. 407
Figure 23.4 Schema of the database. 409
Figure 23.5 Left: the publisher Finite State Machine. Right: the client Finite State
Machine. 414
Figure 23.6 Sequence of methods calls on the agent and the client modules. 416
Figure 23.7 The archiving system in AMORE. 418
Figure 23.8 Class diagram (including some interaction information) of the pack-
age archiver. 419
Figure 24.1 The architecture of the eLogbook and it’s interfaces with the other
ALICE systems and the LHC. 442
Figure 24.2 eLogbook’s database schema. 443
Figure 25.1 Information distribution service of a newspaper or magazine 492
Figure 25.2 DIP architecture. 493
Figure 25.3 Cross–domain DIP communication on the TN. 494
Figure 26.1 Architecture of the TDSM (example).. 505
ALICE DAQ and ECS manual

List of Listings 515
List of Listings

Listing 3.1 Detecting swapping of the event data 35
Listing 4.1 Example DATE banks dump 52
Listing 4.2 Example of configuration files 64
Listing 4.3 Example of roles database 64
Listing 4.4 Example of trigger configuration 65
Listing 4.5 Example of detectors configuration 65
Listing 4.6 Example of event-building configuration 65
Listing 4.7 Example of banks configuration 66
Listing 4.8 Example of dumpDbs output 67
Listing 5.1 Example of event dump in C: 90
Listing 5.2 Examples of use of the monitorClients utility 103
Listing 5.3 Examples of use of the monitorSpy utility. 104
Listing 5.4 Creation of configuration files 105
Listing 6.1 Example of an equipment source code file 124
Listing 7.1 Pseudo code of equipment routine ArmRorcData() 141
Listing 7.2 Pseudo code of equipment routine AsynchReadRorcData() 143
Listing 7.3 Pseudo code of equipment routine ReadEventRorcData() 144
Listing 7.4 Pseudo code of equipment routine DisArmRorcData() 144
Listing 7.5 Pseudo code for handling a FIFO for a single process 145
Listing 9.1 Example of COLE configuration: 155
Listing 9.2 Example of COLE equipment configuration:. 157
Listing 10.1 A simple configuration with 3 streams per GDC, recording to a local disk . 170
Listing 10.2 A simple configuration with 3 streams per GDC, recording to CASTOR . 170
Listing 10.3 The configuration for ROOT recording to CASTOR 170
Listing 10.4 The configuration with special properties for the GDC pcaldXXgdc . . . 171
Listing 10.5 An API function used by the MSR to create an AliMDC object 178
Listing 10.6 Examples of starting MSR in the stand-alone mode 181
Listing 11.1 Setting the Facility name in C programs 189
Listing 15.1 Example of GRUB to trim the Linux memory region to 1 GB 233
Listing 15.2 Example of LILO to trim the Linux memory region to 1 GB 233
Listing 15.3 Example to list the physmem physical base addresses and sizes 235
Listing 15.4 Example of testing the physmem driver with utility physmemTest . . . 237
Listing 16.1 Example of dateBufferManagerValidate run 259
Listing 16.2 Example of simpleFifoValidate run 264
Listing 17.1 Example of directory structure on CASTOR 284
ALICE DAQ and ECS manual

516 List of Listings
�

Listing 19.1 ACT_handle type definition 315
Listing 19.2 ACT_system type definition 315
Listing 19.3 ACT_t_systemCategory type definition. 315
Listing 19.4 ACT_t_systemParams type definition 316
Listing 19.5 ACT_item type definition 316
Listing 19.6 ACT_t_itemCategory type definition. 316
Listing 19.7 ACT_t_itemActiveStatus type definition 317
Listing 19.8 ACT_instance type definition 317
Listing 20.1 Example of rorc_find program 336
Listing 20.2 Example of rorc_qfind program 336
Listing 20.3 Example of an FeC2 script 351
Listing 20.4 Example of a DDG configuration file 361
Listing 23.1 Example of a configuration file for the archiver 419
Listing 25.1 dipEnv.sh: environmental setup 495
Listing 25.2 runBrowser.sh: DIP browser launcher 496
Listing 25.3 restartLHCClient.sh: automatic check and restart of DIP client . . . 498
Listing 25.4 ACRLHCLoggingCheck.sh: automatic start of Java application for the off-line
cross-check. 499
ALICE DAQ and ECS manual

List of Tables 517
List of Tables

Table 0.1 Software versions corresponding to this guide v
Table 3.1 Base event header structure 19
Table 3.2 The successive list of records in a data file generated by DATE 33
Table 3.3 Commonly used platforms and their endianness 34
Table 3.4 Common data header structure 36
Table 3.5 Common Data Header Status and Error bits 37
Table 3.6 Equipment header structure 38
Table 3.7 Event vector structure . . 39
Table 3.8 Payload descriptor structure 40
Table 5.1 Monitor source parameter syntax 92
Table 5.2 Event types . . 94
Table 5.3 Monitor types . . 94
Table 5.4 Bytes swapping control . 99
Table 5.5 Monitoring configuration parameters 106
Table 6.1 Equipment suites in the readList package 118
Table 7.1 RorcData equipment parameters for all data sources. 135
Table 7.2 RorcData equipment parameters (equipment software). 136
Table 7.3 RorcData equipment parameters (RORC internal data generator) 136
Table 7.4 RorcData equipment parameters (FEIC) 137
Table 7.5 RorcData equipment parameters (detector electronics) 137
Table 7.6 RorcSplitter equipment parameters 138
Table 10.1 Attributes in MSR configuration files 174
Table 10.2 Rules of precedence for MSR attribute values 175
Table 11.1 infoLogger configuration parameters - environment variables 184
Table 14.1 Common RunParameters 218
Table 14.2 LDC RunParameters . 219
Table 14.3 GDC RunParameters . 221
Table 14.4 EDM RunParameters . 223
Table 14.5 LDC run-time variables 224
Table 14.6 GDC run-time variables 226
Table 14.7 EDM run-time variables 227
Table 17.1 File Exchange Server daqFES_files table 287
Table 19.1 ACTsystems table . 311
Table 19.2 ACTitems table . 312
Table 19.3 ACTinstances table . 312
ALICE DAQ and ECS manual

518 List of Tables
�

Table 19.4 ACTlockedItems table 313
Table 19.5 ACTconfigurations table 313
Table 19.6 ACTconfigurationsContent table 314
Table 19.7 ACTinfo table . 314
Table 23.1 amoreconfig List of the agents. 409
Table 23.2 amoreref Configuration files table.. 410
Table 23.3 Agents tables fields description 410
Table 23.4 latest_values table . . 411
Table 23.5 Archives tables . . 411
Table 23.6 globals table . 411
Table 23.7 roles table . . 412
Table 23.8 users table . . 412
Table 23.9 agents_access table . 412
Table 23.10 agents_details table . 413
Table 23.11 DIM commands . 419
Table 23.12 Data passed to the Logbook at SOR 421
Table 23.13 Members of the class MonitorObject 423
Table 24.1 logbook table (per run conditions and statistics) 444
Table 24.2 logbook_detectors table 446
Table 24.3 logbook_stats_LDC table 447
Table 24.4 logbook_stats_LDC_trgCluster table 448
Table 24.5 logbook_stats_GDC table 448
Table 24.6 logbook_stats_files table 448
Table 24.7 logbook_daq_active_components table 449
Table 24.8 logbook_shuttle table 450
Table 24.9 logbook_DA table . 451
Table 24.10 logbook_AMORE_agents table 451
Table 24.11 logbook_trigger_clusters table 452
Table 24.12 logbook_trigger_classes table 453
Table 24.13 logbook_trigger_inputs table 453
Table 24.14 logbook_trigger_config table 454
Table 24.15 logbook_stats_HLT table 454
Table 24.16 logbook_stats_HLT_LDC table 454
Table 24.17 logbook_comments table 455
Table 24.18 logbook_comments_interventions table 456
Table 24.19 logbook_files table . 456
Table 24.20 logbook_threads table 456
Table 24.21 logbook_subsystems table 457
Table 24.22 logbook_comments_subsystems table 457
Table 24.23 logbook_users table . 457
Table 24.24 logbook_users_privileges table 458
Table 24.25 logbook_users_profiles table 458
Table 24.26 logbook_filters table 458
Table 24.27 DETECTOR_CODES table 459
Table 24.28 TRIGGER_CLASSES table 459
Table 24.29 logbook_config table 460
Table 24.30 logbookDaemon DIM services and DB fields relationship. 483
Table 24.31 logbookDaemon run events DIM services. 484
ALICE DAQ and ECS manual

List of Acronyms 519
List of Acronyms

A
ACR ALICE Control Room
AliEn Alice Environment
AliMDC A class to represent raw data as a ROOT object (originally designed
 for alimdc program)
AliROOT ALICE Off-line framework for simulation, reconstruction and analysis
 based on ROOT
AMORE Automatic MOnitoring Environment
Apache HTTP server

B
BC Bunch Crossing
BE Big-Endian

C
CASTOR CERN Advanced STORage Manager
CDH Common Data Header
COLE Configurable LDC Emulator
CTP Central Trigger Processor
ClT Calibration Trigger flag

D
D-RORC DAQ Read-Out Receiver Card
DAQ Data Acquisition System
DATEMON DATE system monitoring set
DATE Data Acquisition and Test Environment
DB Database
DCA Detector Control Agent
DCS Detector Control System
DDG DDL Data Generator program
DDL Detector Data Link
DIM Distributed Information Manager package
ALICE DAQ and ECS manual

520 List of Acronyms

DIU Destination Interface Unit in RORC
DMA Direct Memory Access
DST Detector Software Trigger event type
DTSTW Data Transmission Status Word in RORC

E
ECS Experiment Control System
EDM Event Distribution Manager
EOB End of Burst
EOR End of Run
EPS Encapsulated Postscript file format

F
FEE Front-End Electronics
FEIC Front-End Emulator Interface Card
FERO Front-End Read-Out
FIFO First In First Out buffer type
FSM Finite State Machine
FeC2 Front-end Control and Configuration program

G
GB GigaByte
GDC Global Data Collector
GUI Graphical User Interface

H
HLT High-Level Trigger
HTTP Hypertext Transfer Protocol

I
IPC Inter-Process Communication

K
KB KiloByte

L
LDC Local Data Concentrator
LSB Least Significant Bit
LTU Local Trigger Unit
L2a Level-2 accept (trigger)

M
MB MegaByte
MOOD Monitor Of Online Data and Detector Debugger
MSB Most Significant Bit
MSR Multiple-Stream Recorder
ms millisecond
ALICE DAQ and ECS manual

List of Acronyms 521
N
ns nanosecond

P
PCA Partition Control Agent
PDS Permanent Data Storage
PNG Portable Network Graphics file format
pRORC 32-bit/33 MHz PCI bus RORC

R
RCS Run-Control Server interface
ROI Region Of Interest
ROOT An object-oriented data analysis framework
RORC Read-Out Receiver Card

S
SBC Single Board Computer
SIU Source Interface Unit (in DDL)
SMI State Management Interface
SOB Start of Burst
SOR Start of Run
s second

T
TPA Trigger Partition Agent
TPC Time Projection Chamber
TRG Trigger
TTC Timing, Trigger and Control system
ALICE DAQ and ECS manual

522 List of Acronyms

ALICE DAQ and ECS manual

Index 523
Index

Symbols

>Cole 157
>COMMON 170–173, 175–176, 178–179
>DETECTORS 155
>Detectors_section 155
>EQTYPES 157
>Events_section 155
>LDCS 157
>Options_section 155
>OSTREAMS 170–173, 175–176
>RECORDERS 170–173, 175–176

A

AliEN 174, 519
AliMDC 177–178, 519
AliRoot 167, 177, 180, 519
ALPHA 34
AMORE iv
Apache 511, 519
ArmHw 157, 224
ArmRorcData 133, 140–141, 148
ArmRorcSplitter 134
ArmRorcTrigger 134, 148
AsynchReadRorcData 133, 139–141, 143, 148
AsynchReadRorcTrigger 134, 141, 148

B

BIGPHYS 199, 232
BunchCrossing 22
ALICE DAQ and ECS manual

524 Index
�

D

DATE iii
DATE MySQL 62
DATE_COMMON_DEFS 14, 96, 102, 250
DATE_ROOT 126, 140
DATE_SITE 105–106, 155–156, 163, 180, 185–186, 188, 214–215, 228, 281
DATE_SITE_CONFIG 105–106, 180, 214–215, 281
DATE_SITE_LOGS 185
DDL iii
DisArmHw 158
DisArmRorcData 134, 140, 142, 144, 148
DisArmRorcSplitter 134
DisArmRorcTrigger 134, 148
D-RORC iii
DTSTW 128–129, 131–133, 141, 143, 146, 520

E

ECS iv
ECS_LOGS 303
Event types

CALIBRATION_EVENT 21, 33, 94
DETECTOR_SOFTWARE_TRIGGER_EVENT 21, 33, 94
END_OF_BURST 22, 33, 94, 204
END_OF_DATA 21, 33, 94, 221
END_OF_RUN 22, 29, 33, 94, 204
END_OF_RUN_FILES 22, 33, 94, 204
EVENT_FORMAT_ERROR 22, 94, 197
PHYSICS_EVENT 21, 33, 94, 206
START_OF_BURST 21, 33, 94, 204
START_OF_DATA 21, 33, 94, 221
START_OF_RUN 21–22, 29, 33, 94, 162, 204
START_OF_RUN_FILES 21, 33, 94, 162, 204
SYSTEM_SOFTWARE_TRIGGER_EVENT 21, 33, 94

EventArrived 157
EventArrivedRorcData 133, 148
EventArrivedRorcSplitter 134
EventArrivedRorcTrigger 134, 139, 141, 148
EventID 19–20, 22–24, 30–31, 127, 134, 142, 148, 204–206, 223–225, 227,

250–251

F

FEIC 135–137, 520
Front-end emulator 135, 520
FSM 293, 520

I

IPC 199, 232, 281, 520
ALICE DAQ and ECS manual

Index 525
L

L0 37
L1 36–37, 144
L2A 25, 276–277, 520
L2a 25, 276–277, 520
LOGBOOK 198, 228
LOGLEVEL 106, 163, 170–171, 174, 179–181, 194, 220, 222–223, 228

M

MySQL 43–44, 56, 68, 77, 124
MySQL-based databases 55

P

Paged events 14–18, 20–21, 38, 40–41, 220
PDS 3, 86–87, 91, 180, 222, 278, 521

R

RCS 213, 218, 521
ReadEvent 158, 224–225
ReadEventRorcData 134, 139–140, 142, 144, 148
ReadEventRorcSplitter 134
ReadEventRorcTrigger 134, 148
RFIO 169, 177
RPM 7

S

Streamlined 14–16, 18, 21, 30, 154, 157, 163, 220, 264
Sub-detector 277
Sub-event 3, 30–31, 35, 126–127, 131–133, 139, 142, 147, 156, 163, 199, 204,

206–208, 219, 224, 226

T

TARGET 18–19, 22–23, 30, 33, 127, 218
TDS 3
TEST_ANY_ATTRIBUTE 28
TEST_DETECTOR_IN_PATTERN 26
TEST_SYSTEM_ATTRIBUTE 28, 35
TEST_TRIGGER_IN_PATTERN 25
TEST_USER_ATTRIBUTE 29
TPA 297, 299, 302, 521
TTC 2, 4, 276, 521
ALICE DAQ and ECS manual

526 Index
�

ALICE DAQ and ECS manual

	ALICE DAQ and ECS Manual
	Preface

	Contents
	DATE V7
	DATE overview
	1.1 ALICE data-acquisition architecture
	1.2 DATE overview
	1.3 DATE architectural strategies

	DATE configuration parameters
	2.1 DATE site parameters
	2.2 Base configuration
	2.3 Use of hostnames vs. IP addresses.

	Data format
	3.1 Conventions
	3.2 Base header and header extension
	3.3 Streamlined and paged events
	3.4 Collider and fixed target modes
	3.5 The base event header
	3.6 The super event format
	3.7 The complete file format
	3.8 Decoding and monitoring on different platforms
	3.9 The Common Data Header
	3.10 The equipment header
	3.11 Paged events and DATE vectors
	3.12 Data pools

	Configuration databases
	4.1 Overview
	4.2 Information schema
	4.3 The static databases
	4.4 Other centrally stored parameters
	4.5 The database editor
	4.6 Example of a DAQ system
	4.7 The programming interface

	The monitoring package
	5.1 Monitoring in DATE
	5.2 Online monitoring and role name
	5.3 Monitoring and Analysis in C/C++
	5.4 Monitoring by detector
	5.5 Monitoring from ROOT
	5.6 The “eventDump” utility program
	5.7 Monitoring of the online monitoring scheme
	5.8 Monitoring configuration

	The readout program
	6.1 The readout process
	6.2 The generic readList concept
	6.3 Using the generic readList
	6.4 The equipmentList library

	The RORC readout software
	7.1 Introduction to the RORC equipment
	7.2 Internals of the RORC equipment
	7.3 Introduction to the UDP equipment
	7.4 Internals of the UDP equipment

	The trigger system
	8.1 The trigger system
	8.2 LDC synchronization via the equipments

	COLE - COnfigurable LDC Emulator
	9.1 Introduction
	9.2 Delayed mode vs. free-running mode
	9.3 System requirements and configuration
	9.4 COLE as an Equipment
	9.5 Basic Design
	9.6 The colecheck utility

	Data recording
	10.1 Introduction
	10.2 Common data recording procedures
	10.3 Recording from the LDC
	10.4 Recording from the eventBuilder
	10.5 Recording with the Multiple Stream Recorder

	The infoLogger system
	11.1 Introduction
	11.2 infoLogger configuration
	11.3 The infoLogger processes
	11.4 Log messages repository
	11.5 Injection of messages

	The eventBuilder
	12.1 Overview
	12.2 The event-builder architecture
	12.3 Data buffers
	12.4 Consistency checks on the data
	12.5 ALICE events emulation mode
	12.6 The control of the eventBuilder
	12.7 Information and error reporting
	12.8 Configuration

	The event distribution manager
	13.1 Overview
	13.2 The EDM architecture
	13.3 The synchronization with the run control
	13.4 Information and error reporting

	The runControl
	14.1 Introduction
	14.2 Architecture
	14.3 The runControl process
	14.4 The runControl interface
	14.5 The runControl Human Interface
	14.6 The Logic Engine
	14.7 The rcServers
	14.8 The RCS interface
	14.9 Run parameters
	14.10 Run-time variables
	14.11 Control of the log messages
	14.12 Log Files

	The physmem package
	15.1 Introduction
	15.2 Installation of the physmem driver
	15.3 Utility programs for physmem
	15.4 Internals of the physmem driver
	15.5 Physmem application library

	Utility packages
	16.1 The banks manager package
	16.2 The bufferManager package
	16.3 The simpleFifo package
	16.4 The recording library package

	Interfaces
	17.1 Interface with the Trigger System
	17.2 Interface to the High-Level Trigger
	17.3 Interface to AliEn and the Grid
	17.4 File Exchange Server
	17.5 Interface to the Shuttle

	ECS & ACT
	Preface
	ECS Overview
	18.1 Introduction
	18.2 Partitions
	18.3 Stand-alone detectors
	18.4 ECS architecture
	18.5 Detector Control Agent (DCA)
	18.6 The DCA Human Interface
	18.7 Partition Control Agent (PCA)
	18.8 The PCA Human Interface
	18.9 ECS/DCS Interface
	18.10 ECS/DAQ Interface
	18.11 ECS/TRG Interface
	18.12 ECS/HLT Interface
	18.13 logFiles
	18.14 Database
	18.15 Interactions with other systems
	18.16 Auxiliary processes

	ALICE Configuration Tool
	19.1 Architecture
	19.2 Database
	19.3 Application Programming Interface
	19.4 Tools
	19.5 Graphical User Interface

	DDL and D-RORC
	DDL and D-RORC stand-alone software
	20.1 Introduction
	20.2 Test programs for the RORC, DIU and SIU
	20.3 Front-end Control and Configuration (FeC2) program
	20.4 DDL Data Generator (DDG) program
	20.5 Stand-alone installation

	RORC Application Library
	21.1 Introduction
	21.2 Header files
	21.3 The rorc_driver
	21.4 Description of the routines and functions
	21.5 Installation

	DA Framework
	Detector Algorithms Framework
	22.1 Introduction
	22.2 The Detector Algorithms (DAs)
	22.3 DA framework architecture
	22.4 DA framework implementation

	AMORE
	Automatic MOnitoRing Environment (AMORE)
	23.1 Architecture
	23.2 Database
	23.3 Application flow
	23.4 Features details
	23.5 Application Programming Interface (API)
	23.6 Tools

	eLogBook
	The ALICE Electronic Logbook
	24.1 Architecture
	24.2 Database
	24.3 Application Programming Interface
	24.4 Logbook Daemon
	24.5 Tools
	24.6 Graphical User Interface

	LHC machine monitoring
	25.1 Data Interchange Protocol (DIP)
	25.2 LHC beam info: DIP client/DIM server
	25.3 LHC beam info: off-line cross-check

	TDS
	The Transient Data Storage
	26.1 Introduction
	26.2 The Transient Data Storage architecture
	26.3 The TDSM

	References
	References
	List of Figures
	List of Listings
	List of Tables
	List of Acronyms
	Index

